
Data Structures & Algorithms @ ANE 2026
The Dominance Frontier

Bunsen Bitti, Unsigned Long

January 17, 2026

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 1 / 64

Overview

Overview

This is a comedic/informative look at overlaps
between furry and computer science

This is not a rigorous lecture
There will be puns ˆwˆ

Don’t worry if our jokes don’t make sense!
We’ve been coding for most of our lives
If you’re confused, that’s on us
We’re out of touch with reality

If you are curious about anything in these slides,
feel free to chat with us!

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 2 / 64

How I Found the Fandom (Unsigned Long)

How I Found the Fandom (Unsigned Long)

Found furries through con videos

Found some eastern dragons with the
word “Long” in their name
Thought about “long” for too long
Realized it’s in my code
Pun was too good to do nothing with,
so I made a fursona

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 3 / 64

How I Found the Fandom (Unsigned Long)

How I Found the Fandom (Unsigned Long)

Found furries through con videos
Found some eastern dragons with the
word “Long” in their name

Thought about “long” for too long
Realized it’s in my code
Pun was too good to do nothing with,
so I made a fursona

Tien Long

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 3 / 64

How I Found the Fandom (Unsigned Long)

How I Found the Fandom (Unsigned Long)

Found furries through con videos
Found some eastern dragons with the
word “Long” in their name
Thought about “long” for too long

Realized it’s in my code
Pun was too good to do nothing with,
so I made a fursona

lóng

龙
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 3 / 64

How I Found the Fandom (Unsigned Long)

How I Found the Fandom (Unsigned Long)

Found furries through con videos
Found some eastern dragons with the
word “Long” in their name
Thought about “long” for too long
Realized it’s in my code

Pun was too good to do nothing with,
so I made a fursona

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 3 / 64

How I Found the Fandom (Unsigned Long)

How I Found the Fandom (Unsigned Long)

Found furries through con videos
Found some eastern dragons with the
word “Long” in their name
Thought about “long” for too long
Realized it’s in my code
Pun was too good to do nothing with,
so I made a fursona

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 3 / 64

How I Found the Fandom (Bunsen)

How I Found the Fandom (Bunsen)

FNAF made me a bunny-obsessed
furry back in 6th grade

Started in algorithms, moved to
hardware and performance engineering
Made an FPGA-controlled protogen for
a final project because why not

artist: thepipefox (FurAffinity)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 4 / 64

How I Found the Fandom (Bunsen)

How I Found the Fandom (Bunsen)

FNAF made me a bunny-obsessed
furry back in 6th grade
Started in algorithms, moved to
hardware and performance engineering

Made an FPGA-controlled protogen for
a final project because why not

artist: @Alextheyellowthing (Telegram)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 4 / 64

How I Found the Fandom (Bunsen)

How I Found the Fandom (Bunsen)

FNAF made me a bunny-obsessed
furry back in 6th grade
Started in algorithms, moved to
hardware and performance engineering
Made an FPGA-controlled protogen for
a final project because why not

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 4 / 64

Fursuits are Planar Graphs

Fursuits are Planar Graphs

Bunsen’s head pattern Unsigned Long’s tail pattern

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 5 / 64

Fursuits are Planar Graphs

Fursuits are Planar Graphs

Graph:
Vertices labeled 1, 2, . . . , n
Edges go between two vertices
At most n · (n − 1)/2 edgesa

Planar graphs: graphs that can be
drawn without crossing edges

At most 3n − 6 = O(n) edges!b
Fursuits are planar graphs
Seam count = O(Fabric patch count)

aAssuming simple graphs

bAssuming faces have degree ≥ 3

1

2

3

4

6

5

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 6 / 64

Fursuits are Planar Graphs

Fursuits are Planar Graphs

Graph:
Vertices labeled 1, 2, . . . , n
Edges go between two vertices
At most n · (n − 1)/2 = O(n2) edgesa

Planar graphs: graphs that can be
drawn without crossing edges

At most 3n − 6 = O(n) edges!b
Fursuits are planar graphs
Seam count = O(Fabric patch count)

aAssuming simple graphs

bAssuming faces have degree ≥ 3

1

2

3

4

6

5

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 6 / 64

Fursuits are Planar Graphs

Fursuits are Planar Graphs

Graph:
Vertices labeled 1, 2, . . . , n
Edges go between two vertices
At most n · (n − 1)/2 = O(n2) edgesa

Planar graphs: graphs that can be
drawn without crossing edges

At most 3n − 6 = O(n) edges!b
Fursuits are planar graphs
Seam count = O(Fabric patch count)

aAssuming simple graphs
bAssuming faces have degree ≥ 3

1

2

3

4

6

5

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 6 / 64

Alphabet Trees

Trees!

Trees are the building block of
most data structures.

Every node has one parent,
except for the root which has
no parent.

Nodes with no children are
leaves, nodes with children are
internal nodes.

By Paddy3118 - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=83223854

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 7 / 64

Alphabet Trees

A-Z of Trees (non-exhaustive)

AVL Trees
B Trees
Cartesian Trees
Decision Tree
Exponential Trees
Fenwick Trees
Gomory-Hu Tree
H-Tree
Interval Tree
Judy Array

k-d Tree
Link-Cut Tree
Merkle Trees
N Tree
Order Statistics Tree
PQ Tree
Quadtree
Red Black Trees
Splay Trees
Tango Trees

Universal B Trees
Vantage Point Tree
Wallace Tree
X-fast Trie
Y-fast Trie
Zip Trees

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 8 / 64

Alphabet Trees

Subsections Subtrees

ARSTZ : Balanced Binary Search Trees (BST)

BCMUXY : Other Binary Trees

IKQV : Spatial Data Structures

EFGJLP : Niche data structures

DHNOW : Non-data structures

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 9 / 64

Alphabet Trees

Subsections Subtrees

ARSTZ : Balanced Binary Search Trees (BST)

BCMUXY : Other Binary Trees

IKQV : Spatial Data Structures

EFGJLP : Niche data structures

DHNOW : Non-data structures

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 10 / 64

Alphabet Trees

AVL Trees1

First O(log n) self-balancing
binary search tree!

Ensures the height of its
children do not differ by > 1

https://commons.wikimedia.org/w/index.php?curid=49182185

F

J

L

N

P

Q

S

U

V

X

Q

S

U

XC

D G

0 0 0

0

–1

+1

+1

+1

0

–1 0

0

–1

1Adelson-Velsky, Georgy; Landis, Evgenii (1962)
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 11 / 64

Alphabet Trees

AVL Trees (Rotation)

Imbalances are fixed by
rotations, fundamental
local operations for many
balanced BSTs

/r/furry irl/comments/1dumfg3/

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 12 / 64

Alphabet Trees

AVL Trees (Rotation)

Imbalances are fixed by
rotations, fundamental
local operations for many
balanced BSTs

https://pages.cs.wisc.edu/~qingyi/

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 13 / 64

Alphabet Trees

Red Black Tree2

Balanced BST, red-black coloring
chosen because it looked best on the
laser printer they used.

All root-to-leaf paths have the same
number of black nodes

No red node has a red parent
https://pages.cs.wisc.edu/~wyoungjun/

2Guibas, Leonidas J.; Sedgewick, Robert (1978).
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 14 / 64

Alphabet Trees

Splay?

https://en.wikifur.com/wiki/Furpile

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 15 / 64

Alphabet Trees

Splay Tree3

After every operation, splay the
searched node to the root of the tree
using double-rotations.

Suspected to be optimal for any
sequence of BST operations up to a
constant factor (Dynamic Optimality
Conjecture)

Trabelsi, Zouheir & Zeidan, Safaa & Masud, Mehedy & Ghoudi, Kilani.

(2015). Statistical Dynamic Splay Tree Filters.

3Sleator, Daniel D.; Tarjan, Robert E. (1985).
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 16 / 64

Alphabet Trees

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 17 / 64

Alphabet Trees

Link-Cut Tree4

Maintains a set of rooted trees

Amortized O(log n) link, cut
and find-root at any node

Improves Dinic’s Algorithm
(for max-flow) from O(V 2E)
to O(VE log V).

By Drrilll, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=25495327

4Sleator, D. D.; Tarjan, R. E. (1983).
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 18 / 64

Alphabet Trees

Decision Trees

Each node represents a query, each leaf
represents a category/decision.

Commonly used in decision analysis
and machine learning

Fuzzy Decision Trees are also a thing

MIT 6.390 Intro ML Course Notes and Breiman, Friedman, Olshen, Stone (1984)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 19 / 64

Alphabet Trees

(Furry) Decision Trees (r/furry/comments/4gxm0l/)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 20 / 64

Alphabet Trees

Missing N-tree

Seriously I could not find any tree data structure that starts with N

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 21 / 64

Macro-Micro Tree Decomposition

Tree Decomposition

Breaks down a rooted tree
into smaller subparts to more
efficiently solve subproblems
Heavy-Light Decomposition

Separates edges into heavy
(≥ 1/2 subtree size) and
light (< 1/2 subtree size).
Every path from root to
leaf contains ≤ log2(n)
light edges.

https://www.naukri.com/code360/library/heavy-light-decomposition-hld

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 22 / 64

Macro-Micro Tree Decomposition

Macro-Micro Tree Decomposition

Node is micro if it has less than O(log(n))
descendants (else macro)
Node is macro leaf if it is macro and all its
children are micro
Subtree is microtree if its parent is a macro leaf
There are at most O(n/ log(n)) macro leaves

Macro leaves have O(log(n)) decendants, and
do not share decendants

There are O(n1/c) distinct microtree shapes
Tree shape count is exponential in node count
Number of microtree nodes is logarithmic in n
log and exp cancel out to O(n1/c)

13 14

98 10 11 12

5 6 7

2 43

1

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 23 / 64

Instruction Set Architecture

Instruction Set Architecture

CPU Programs = lots of instructions that the CPU steps through to execute
ISA is how the CPU interprets those instructions.
Examples: x86, RISC-V etc.
There are a lot of instructions.

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 24 / 64

x86 ISA

x86 ISA

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 25 / 64

x86 ISA

x86 ISA

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 26 / 64

x86 ISA

x86 ISA

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 27 / 64

x86 ISA

x86 ISA

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 28 / 64

x86 ISA

x86 ISA

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 29 / 64

x86 ISA

x86 ISA

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 30 / 64

KNOTD

KNOTD

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 31 / 64

Fast Furrier Transform

Fast Furrier Transform

Fourier Transform?
Typically computed with complex numbers
Transform signal between time and frequency domain

This is not a math panel!
See this 3Blue1Brown video:
“But what is the Fourier Transform? A visual introduction.” →

This is an algorithms panel :3
We will use FFT to multiply polynomials in O(n log n) time

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 32 / 64

Fast Furrier Transform

Fast Furrier Transform

Fourier Transform?
Typically computed with complex numbers
Transform signal between time and frequency domain

This is not a math panel!
See this 3Blue1Brown video:
“But what is the Fourier Transform? A visual introduction.” →

This is an algorithms panel :3
We will use FFT to multiply polynomials in O(n log n) time

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 32 / 64

Fast Furrier Transform

Fast Furrier Transform

Fourier Transform?
Typically computed with complex numbers
Transform signal between time and frequency domain

This is not a math panel!
See this 3Blue1Brown video:
“But what is the Fourier Transform? A visual introduction.” →

This is an algorithms panel :3
We will use FFT to multiply polynomials in O(n log n) time

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 32 / 64

Fast Furrier Transform Polynomials

Fast Furrier Transform: Polynomials

f (x) = 3 + 2x − 4x2 + x 3

coefficient term degree

f (0) = 3
f (1) = 2
f (2) = −1
f (3) = 0

Evaluating a polynomial at a point
takes O(n) time

x

f (x)

(0, 3)

(1, 2)

(2, −1)

(3, 0)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 33 / 64

Fast Furrier Transform Multiplication

Fast Furrier Transform: Multiplication

f (x) = 3 + 2x − 4x2 + x3

g(x) = 2 − x + x2

h(x) = f (x) · g(x) = 6 + x − 7x2 + 8x3 − 5x4 + x5

Multiplying two polynomials of degree n by distributing takes O(n2) time

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 34 / 64

Fast Furrier Transform Polynomial Interpolation/Evaluation

Fast Furrier Transform: Polynomial Interpolation/Evaluation

For a set of n points, there is a unique
polynomial with degree less than n
that passes through all the points
Evaluating the polynomial at n
different x values to find these points
typically takes O(n2) time
If we choose the x values cleverly, we
can do better

x

f (x)

(0, 3)

(1, 2)

(2, −1)

(3, 0)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 35 / 64

Fast Furrier Transform Evaluation at ±1

Fast Furrier Transform: Evaluation at ±1

f (x) = a0 + a1x + a2x2 + a3x3 + · · · + an−2xn−2 + an−1xn−1

f (1) = a0 + a1 + a2 + a3 + · · · + an−2 + an−1

f (−1) = a0 − a1 + a2 − a3 + · · · + an−2 − an−1

f (1) = (a0 + a2 + · · · + an−2) + (a1 + a3 + · · · + an−1)
f (−1) = (a0 + a2 + · · · + an−2) − (a1 + a3 + · · · + an−1)

Number of operations is halved!

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 36 / 64

Fast Furrier Transform Evaluation at ±1

Fast Furrier Transform: Evaluation at ±1

f (x) = a0 + a1x + a2x2 + a3x3 + · · · + an−2xn−2 + an−1xn−1

f (1) = a0 + a1 + a2 + a3 + · · · + an−2 + an−1

f (−1) = a0 − a1 + a2 − a3 + · · · + an−2 − an−1

f (1) = (a0 + a2 + · · · + an−2) + (a1 + a3 + · · · + an−1)
f (−1) = (a0 + a2 + · · · + an−2) − (a1 + a3 + · · · + an−1)

Number of operations is halved!

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 36 / 64

Fast Furrier Transform Evaluation at ±1

Fast Furrier Transform: Evaluation at ±1

f (x) = a0 + a1x + a2x2 + a3x3 + · · · + an−2xn−2 + an−1xn−1

f (1) = a0 + a1 + a2 + a3 + · · · + an−2 + an−1

f (−1) = a0 − a1 + a2 − a3 + · · · + an−2 − an−1

f (1) = (a0 + a2 + · · · + an−2) + (a1 + a3 + · · · + an−1)
f (−1) = (a0 + a2 + · · · + an−2) − (a1 + a3 + · · · + an−1)

Number of operations is halved!

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 36 / 64

Fast Furrier Transform Evaluation at ±1

Fast Furrier Transform: Evaluation at ±1

f (x) = a0 + a1x + a2x2 + a3x3 + · · · + an−2xn−2 + an−1xn−1

f (1) = a0 + a1 + a2 + a3 + · · · + an−2 + an−1

f (−1) = a0 − a1 + a2 − a3 + · · · + an−2 − an−1

f (1) = (a0 + a2 + · · · + an−2) + (a1 + a3 + · · · + an−1)
f (−1) = (a0 + a2 + · · · + an−2) − (a1 + a3 + · · · + an−1)

Number of operations is halved!
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 36 / 64

Fast Furrier Transform Roots of Unity

Fast Furrier Transform: Roots of Unity

The even/odd trick works because
repeatedly multiplying by −1
cycles between −1 and 1
It’d be convenient if we had other
values making this kind of cycle, and if
these cycles were longer

Complex numbers give us values r
where rn = 1
These are called roots of unity
FFT evaluates f at 1, r , r 2, . . . , rn−1

−1 1

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 37 / 64

Fast Furrier Transform Roots of Unity

Fast Furrier Transform: Roots of Unity

The even/odd trick works because
repeatedly multiplying by −1
cycles between −1 and 1
It’d be convenient if we had other
values making this kind of cycle, and if
these cycles were longer
Complex numbers give us values r
where rn = 1
These are called roots of unity
FFT evaluates f at 1, r , r 2, . . . , rn−1

−1 1

i

−1

−i

1

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 37 / 64

Fast Furrier Transform Odd/Even Trick

Fast Furrier Transform: Odd/Even Trick

f (x) = a0 + a1x + a2x2 + · · · + an−1xn−1

fe(x) = a0 +a2x2+a4x4 + · · · + an−2xn−2

fo(x) = a1x+a3x3+a5x5 + · · · + an−1xn−1

fo(x) = x(a1 +a3x2+a5x4 + · · · + an−1xn−2)

ge(y) = a0 +a2y +a4y 2 + · · · + an−2yn/2−1

go(y) = a1 +a3y +a5y 2 + · · · + an−1yn/2−1

f (x) = ge(x2) + xgo(x2)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 38 / 64

Fast Furrier Transform Odd/Even Trick

Fast Furrier Transform: Odd/Even Trick

f (x) = a0 + a1x + a2x2 + · · · + an−1xn−1

fe(x) = a0 +a2x2+a4x4 + · · · + an−2xn−2

fo(x) = a1x+a3x3+a5x5 + · · · + an−1xn−1

fo(x) = x(a1 +a3x2+a5x4 + · · · + an−1xn−2)

ge(y) = a0 +a2y +a4y 2 + · · · + an−2yn/2−1

go(y) = a1 +a3y +a5y 2 + · · · + an−1yn/2−1

f (x) = ge(x2) + xgo(x2)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 38 / 64

Fast Furrier Transform Odd/Even Trick

Fast Furrier Transform: Odd/Even Trick

f (x) = a0 + a1x + a2x2 + · · · + an−1xn−1

fe(x) = a0 +a2x2+a4x4 + · · · + an−2xn−2

fo(x) = a1x+a3x3+a5x5 + · · · + an−1xn−1

fo(x) = x(a1 +a3x2+a5x4 + · · · + an−1xn−2)

ge(y) = a0 +a2y +a4y 2 + · · · + an−2yn/2−1

go(y) = a1 +a3y +a5y 2 + · · · + an−1yn/2−1

f (x) = ge(x2) + xgo(x2)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 38 / 64

Fast Furrier Transform Odd/Even Trick

Fast Furrier Transform: Odd/Even Trick

f (x) = a0 + a1x + a2x2 + · · · + an−1xn−1

fe(x) = a0 +a2x2+a4x4 + · · · + an−2xn−2

fo(x) = a1x+a3x3+a5x5 + · · · + an−1xn−1

fo(x) = x(a1 +a3x2+a5x4 + · · · + an−1xn−2)

ge(y) = a0 +a2y +a4y 2 + · · · + an−2yn/2−1

go(y) = a1 +a3y +a5y 2 + · · · + an−1yn/2−1

f (x) = ge(x2) + xgo(x2)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 38 / 64

Fast Furrier Transform Odd/Even Trick

Fast Furrier Transform: Odd/Even Trick

f (x) = a0 + a1x + a2x2 + · · · + an−1xn−1

fe(x) = a0 +a2x2+a4x4 + · · · + an−2xn−2

fo(x) = a1x+a3x3+a5x5 + · · · + an−1xn−1

fo(x) = x(a1 +a3x2+a5x4 + · · · + an−1xn−2)

ge(y) = a0 +a2y +a4y 2 + · · · + an−2yn/2−1

go(y) = a1 +a3y +a5y 2 + · · · + an−1yn/2−1

f (x) = ge(x2) + xgo(x2)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 38 / 64

Fast Furrier Transform Odd/Even Trick

Fast Furrier Transform: Odd/Even Trick

f (x) = a0 + a1x + a2x2 + · · · + an−1xn−1

fe(x) = a0 +a2x2+a4x4 + · · · + an−2xn−2

fo(x) = a1x+a3x3+a5x5 + · · · + an−1xn−1

fo(x) = x(a1 +a3x2+a5x4 + · · · + an−1xn−2)

ge(y) = a0 +a2y +a4y 2 + · · · + an−2yn/2−1

go(y) = a1 +a3y +a5y 2 + · · · + an−1yn/2−1

f (x) = ge(x2) + xgo(x2)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 38 / 64

Fast Furrier Transform Divide and Conquer

Fast Furrier Transform: Divide and Conquer

f (x) = a0 + a1x + a2x2 + . . . + an−1xn−1 = ge(x2) + xgo(x2)
ge(y) = a0 + a2y + a4y 2 + . . . + an−2yn/2−1

go(y) = a1 + a3y + a5y 2 + . . . + an−1yn/2−1

We need to evaluate ge and go at y = x2 =

(1)2, (r)2, (r 2)2, . . . , (rn/2−1)2, (rn/2)2, (rn/2+1)2, . . . , (rn−1)2

1, r 2, r 4, . . . , rn−2, rn = 1, r 2, . . . , rn−2

To evaluate f at n roots of unity, we evaluate ge and go at n/2 roots of unity
Recursion! T (n) = 2T (n/2) + O(n) = O(n log n)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 39 / 64

Fast Furrier Transform Divide and Conquer

Fast Furrier Transform: Divide and Conquer

f (x) = a0 + a1x + a2x2 + . . . + an−1xn−1 = ge(x2) + xgo(x2)
ge(y) = a0 + a2y + a4y 2 + . . . + an−2yn/2−1

go(y) = a1 + a3y + a5y 2 + . . . + an−1yn/2−1

We need to evaluate ge and go at y = x2 =

(1)2, (r)2, (r 2)2, . . . , (rn/2−1)2, (rn/2)2, (rn/2+1)2, . . . , (rn−1)2

1, r 2, r 4, . . . , rn−2, rn = 1, r 2, . . . , rn−2

To evaluate f at n roots of unity, we evaluate ge and go at n/2 roots of unity
Recursion! T (n) = 2T (n/2) + O(n) = O(n log n)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 39 / 64

Fast Furrier Transform Divide and Conquer

Fast Furrier Transform: Divide and Conquer

f (x) = a0 + a1x + a2x2 + . . . + an−1xn−1 = ge(x2) + xgo(x2)
ge(y) = a0 + a2y + a4y 2 + . . . + an−2yn/2−1

go(y) = a1 + a3y + a5y 2 + . . . + an−1yn/2−1

We need to evaluate ge and go at y = x2 =

(1)2, (r)2, (r 2)2, . . . , (rn/2−1)2, (rn/2)2, (rn/2+1)2, . . . , (rn−1)2

1, r 2, r 4, . . . , rn−2, rn = 1, r 2, . . . , rn−2

To evaluate f at n roots of unity, we evaluate ge and go at n/2 roots of unity
Recursion! T (n) = 2T (n/2) + O(n) = O(n log n)
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 39 / 64

Fast Furrier Transform Inverse FFT?

Fast Furrier Transform: Inverse FFT?

Multiplying polynomials of degree n
Distributing would take O(n2)
FFT takes O(n log n)
Pointwise multiplication takes O(n)

FFT is (approximately) its own inverse

No proof here: not a math panel
IFFT takes O(n log n)
The Anti-Furry Transform is just a
Furry Transform in disguise :3

f , g
coeff

h
coeff

f , g
points

h
points

Distributing
O(n2)

FFT
O(n log n) Pointwise

multiplication
O(n)

FFT
O(n log n)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 40 / 64

Fast Furrier Transform Inverse FFT?

Fast Furrier Transform: Inverse FFT?

Multiplying polynomials of degree n
Distributing would take O(n2)
FFT takes O(n log n)
Pointwise multiplication takes O(n)

FFT is (approximately) its own inverse
No proof here: not a math panel
IFFT takes O(n log n)
The Anti-Furry Transform is just a
Furry Transform in disguise :3

f , g
coeff

h
coeff

f , g
points

h
points

Distributing
O(n2)

FFT
O(n log n) Pointwise

multiplication
O(n)

IFFT
O(n log n)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 40 / 64

E621 Programming Language Tags

E621 Programming Language Tags

How many posts
exist for different
programming
languages?

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 41 / 64

E621 Programming Language Tags

E621 Programming Language Tags

How many posts
exist for different
programming
languages?

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 41 / 64

Animal Computing Mascots

Animal Computing Mascots

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 42 / 64

Animal Computing Mascots Trans Rights!

Animal Computing Mascots: Trans Rights!

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 43 / 64

Animal Computing Mascots Unofficial Mascot of C++

Animal Computing Mascots: Unofficial Mascot of C++

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 44 / 64

Animal Computing Mascots Powershell...

Animal Computing Mascots: Powershell...

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 45 / 64

Animal Computing Mascots WSL

Animal Computing Mascots: WSL
From: Richard Stallman

Subject: WSL
Date: Mon, 23 Jan 2023 22:50:01 -0500

[[[To any NSA and FBI agents reading my email: please consider]]]
[[[whether defending the US Constitution against all enemies,]]]
[[[foreign or domestic, requires you to follow Snowden’s example.]]]

How about pronouncing (and writing) "WSL" as "weasel"?

--
Dr Richard Stallman (https://stallman.org)
Chief GNUisance of the GNU Project (https://gnu.org)
Founder, Free Software Foundation (https://fsf.org)
Internet Hall-of-Famer (https://internethalloffame.org)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 46 / 64

O’Reilly Book Covers

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 47 / 64

O’RLY Book Covers

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 48 / 64

Protogen Disconnect

https://youtu.be/t9QugQkASdQ

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 49 / 64

https://youtu.be/t9QugQkASdQ

Twisted Pair/Coaxial Cable

Twisted Pair/Coaxial Cable5

Electric current makes magnetic fields
Excessive magnetic fields causes noise
and interference
Idea: place reverse current close to
forward current to have fields cancel
Twisted pairs!

To make the fields align and cancel
even more, the two conductors can be
made to share the same axis
Coaxial cable!

5Disclaimer: I am not an Electrical Engineer
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 50 / 64

Twisted Pair/Coaxial Cable

Twisted Pair/Coaxial Cable5

Electric current makes magnetic fields
Excessive magnetic fields causes noise
and interference
Idea: place reverse current close to
forward current to have fields cancel
Twisted pairs!
To make the fields align and cancel
even more, the two conductors can be
made to share the same axis
Coaxial cable!

plastic jacket
dielectric insulator

metallic shield
centre core

5Disclaimer: I am not an Electrical Engineer
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 50 / 64

Twisted Pair/Coaxial Cable

Twisted Pair/Coaxial Cable5

Electric current makes magnetic fields
Excessive magnetic fields causes noise
and interference
Idea: place reverse current close to
forward current to have fields cancel
Twisted pairs!
To make the fields align and cancel
even more, the two conductors can be
made to share the same axis
Coaxial cable!

5Disclaimer: I am not an Electrical Engineer
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 50 / 64

Twisted Pair/Coaxial Cable

Twisted Pair/Coaxial Cable5

Electric current makes magnetic fields
Excessive magnetic fields causes noise
and interference
Idea: place reverse current close to
forward current to have fields cancel
Twisted pairs!
To make the fields align and cancel
even more, the two conductors can be
made to share the same axis
Coaxial cable!

5Disclaimer: I am not an Electrical Engineer
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 50 / 64

Morse Code

Morse Code

5 4 3 2 + 1 6 = / 7 8 9 0

H V F L P J B X C Y Z Q

S U R W D K G O

I A N M

E T

start

Letter Frequency
E 12.7%
T 9.1%
A 8.2%
O 7.5%
I 7.0%
N 6.7%
S 6.3%
H 6.1%
R 6.0%
D 4.3%
L 4.0%

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 51 / 64

Morse Code

Morse Code

5 4 3 2 + 1 6 = / 7 8 9 0

H V F L P J B X C Y Z Q

S U R W D K G O

I A N M

E T

start
Letter Frequency

E 12.7%
T 9.1%
A 8.2%
O 7.5%
I 7.0%
N 6.7%
S 6.3%
H 6.1%
R 6.0%
D 4.3%
L 4.0%

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 51 / 64

Morse Code

Morse Code

5 4 3 2 + 1 6 = / 7 8 9 0

H V F L P J B X C Y Z Q

S U R W D K G O

I A N M

E T

start
Letter Frequency

E 12.7%
T 9.1%
A 8.2%
O 7.5%
I 7.0%
N 6.7%
S 6.3%
H 6.1%
R 6.0%
D 4.3%
L 4.0%

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 51 / 64

Braille

Braille
Aroga Braille Chart

ALPHABET AND NUMBERS

1 2 3 4 5 6 7 8 9 0
a b c d e f g h i j

abcdefghij
k l m n o p q r s t

klmnopqrst
u v x y z w

uvxyz w

INDICATORS

letter

word

passage

capital terminator

u

uu

u

u
Grade 1

symbol

word

passage

Grade 1 terminator

y

z

z

Typeform

italic symbol

italic word

italic passage

italic terminator

bold symbol

bold word

bold passage

bold terminator

underline symbol

underline word

underline passage

underline terminator

script symbol

script word

script passage

script terminator

PUNCTUATION

comma ,

period .

apostrophe ‘

colon :

dash _

long dash —

exclamation mark !

hyphen -

question mark ?

semicolon ;

ellipsis ...

forward slash /

backward slash \

opening outer
quotation mark “

closing outer
quotation mark ”

opening inner
quotation mark ‘

closing inner
quotation mark ’

GROUPING PUNCTUATION

opening round
parenthesis (
closing round
parenthesis)
opening square
bracket [
closing square
bracket]
opening curly
bracket {
closing curly
bracket }
opening angle
bracket <
closing angle
bracket >

SIGNS OF OPERATION
AND COMPARISON

plus +

minus -

multiplication x

multiplication dot

division ÷

greater than >

less than <

equals =

CURRENCY AND
MEASUREMENT

cent ¢

dollar $

euro €

British Pound £

feet ‘

inches “

SPECIAL SYMBOLS

percent %

degree °

angle

hashtag #

ampersand &

copyright ©

trademark ™
superscript
indicator
subscript
indicator

ALPHABETIC WORDSIGNS

b
c
d
e
f
g
h
j
k
l
m
n
p
q
r
s
t
u
v
w
x
y
z

but
can
do
every
from
go
have
just
knowledge
like
more
not
people
quite
rather
so
that
us
very
will
it
you
as

STRONG WORDSIGNS

child

shall

this

which

out

still

STRONG GROUPSIGNS

ch

sh

th

wh

ou

st

gh

ed

er

ow

ar

ing

STRONG CONTRACTIONS
(Part and Whole Word)

and

for

of

the

with

 FINAL-LETTER
GROUPSIGNS

ound

ance

sion

less

ount

ence

ong

ful

tion

ness

ment

ityLOWER
GROUPSIGNS

ea

bb

cc

ff

gg

be

con

dis

en

in

LOWER WORDSIGNS

be

enough

were

his

in

was

INITIAL-LETTER
CONTRACTIONS

day

ever

father

here

know

lord

mother

name

one

part

question

right

some

time

under

work

young

there

character

through

where

ought

upon

word

these

those

whose

cannot

had

many

spirit

world

their

SHORTFORM WORDS

ab
abv
ac
acr
af
afn
afw
ag
agst
alm
alr
al
alth
alt
alw
bec
bef
beh
bel
ben
bes
bet
bey
bl
brl
chn
concv
concvg
cd
dcv
dcvg
dcl
dclg
ei
fst
fr
gd
grt

about
above
according
across
aft er
aft ernoon
aft erward
again
against
almost
already
also
although
altogether
always
because
before
behind
below
beneath
beside
between
beyond
blind
braille
children
conceive
conceiving
could
deceive
deceiving
declare
declaring
either
fi rst
friend
good
great

herf
hm
hmf
imm
xs
xf
lr
ll
mch
mst
myf
nec
nei
onef
ourvs
pd
percv
percvg
perh
qk
rcv
rcvg
rjc
rjcg
sd
shd
sch
themvs
thyf
td
tgr
tm
tn
wd
yr
yrf
yrvs

herself
him
himself
immediate
its
itself
letter
little
much
must
myself
necessary
neither
oneself
ourselves
paid
perceive
perceiving
perhaps
quick
receive
receiving
rejoice
rejoicing
said
should
such
themselves
thyself
today
together
tomorrow
tonight
would
your
yourself
yourselves

Retired Contractions
(not used in UEB)

ble ation ally

dd com to

into by o’c o’clock

ArogaTECHNOLOGIES
brought to you by

Visit our online store at www.aroga.com

TECHNOLOGIES

Capital

© Aroga Technologies 2014

Numeric

bullet

@ sign @

asterisk *

dot locator for mention

u

uu

z

zzz

zk

xp

xp

xz

xx

tp

tp

tz

tx

wp

wp

wz

wx

cp

cp

cz

cx

f

t

t

t

uu

euu

t

u

v

t

www

wt

wu

v

w

uv

uz

ev

wv

wn

wv

c

wn

v

cn

et

eu

ev

ew

et

ct

cv

ez

cf

cs

cz

cp

z

zz

wz

jj

w

wy

cv

df

dq

z

v

ww

tu

q

q

q

q

q

z

y

y

y

q

n

q

q

y

y

y

y

v

v

v

w

t

y

wg

w

wq

wq

wq

tg

gt

tp

qt

tq

tq

yt

eg

eg

eg

eg

ek

ev

eq

eq

en

e

ev

er

eq

et

ex

ew

ey

e

ez

ey

ez

eq

wz

ww

wq

wy

wq

wc

wh

mw

ws

ww

wq

b

l

h

t

q

l

h

w

w

t

l

w

q

v

t

t

t

w

zt

uq

u

t

uy

t

en

v

q

g

Unifi ed English

et

w

qw

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 52 / 64

Braille

Braille

ALPHABET AND NUMBERS
1 2 3 4 5 6 7 8 9 0
a b c d e f g h i j
.
.
.

.

.

.

r .
.
.

.

.

.

rr .
.
.

.

.

.

r r .
.
.

.

.

.

r rr .
.
.

.

.

.

r r .
.
.

.

.

.

rr r .
.
.

.

.

.

rr rr .
.
.

.

.

.

rr r .
.
.

.

.

.
r r .

.

.

.

.

.
r rr

k l m n o p q r s t
.
.
.

.

.

.

rr .
.
.

.

.

.

rrr .
.
.

.

.

.

rr r .
.
.

.

.

.

rr rr .
.
.

.

.

.

rr r .
.
.

.

.

.

rrr r .
.
.

.

.

.

rrr rr .
.
.

.

.

.

rrr r .
.
.

.

.

.
rr r .

.

.

.

.

.
rr rr

u v x y z w
.
.
.

.

.

.

rr r .
.
.

.

.

.

rrr r .
.
.

.

.

.

rr rr .
.
.

.

.

.

rr rrr .
.
.

.

.

.

rr rr .
.
.

.

.

.
r rrr

STRONG GROUPSIGNS
.
.
.

.

.

.

r r ch
.
.
.

.

.

.

rr r gh
.
.
.

.

.

.

r rr sh
.
.
.

.

.

.

rr rr ed
.
.
.

.

.

.

r rrr th
.
.
.

.

.

.

rr rrr er
.
.
.

.

.

.

r rr wh
.
.
.

.

.

.
r rr ow

.

.

.

.

.

.

rr rr ou
.
.
.

.

.

.r rr ar
.
.
.

.

.

.r r st
.
.
.

.

.

.r rr ing

“owo” is r rr rr r

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 53 / 64

Braille

Braille

ALPHABET AND NUMBERS
1 2 3 4 5 6 7 8 9 0
a b c d e f g h i j
.
.
.

.

.

.

r .
.
.

.

.

.

rr .
.
.

.

.

.

r r .
.
.

.

.

.

r rr .
.
.

.

.

.

r r .
.
.

.

.

.

rr r .
.
.

.

.

.

rr rr .
.
.

.

.

.

rr r .
.
.

.

.

.
r r .

.

.

.

.

.
r rr

k l m n o p q r s t
.
.
.

.

.

.

rr .
.
.

.

.

.

rrr .
.
.

.

.

.

rr r .
.
.

.

.

.

rr rr .
.
.

.

.

.

rr r .
.
.

.

.

.

rrr r .
.
.

.

.

.

rrr rr .
.
.

.

.

.

rrr r .
.
.

.

.

.
rr r .

.

.

.

.

.
rr rr

u v x y z w
.
.
.

.

.

.

rr r .
.
.

.

.

.

rrr r .
.
.

.

.

.

rr rr .
.
.

.

.

.

rr rrr .
.
.

.

.

.

rr rr .
.
.

.

.

.
r rrr

STRONG GROUPSIGNS
.
.
.

.

.

.

r r ch
.
.
.

.

.

.

rr r gh
.
.
.

.

.

.

r rr sh
.
.
.

.

.

.

rr rr ed
.
.
.

.

.

.

r rrr th
.
.
.

.

.

.

rr rrr er
.
.
.

.

.

.

r rr wh
.
.
.

.

.

.
r rr ow

.

.

.

.

.

.

rr rr ou
.
.
.

.

.

.r rr ar
.
.
.

.

.

.r r st
.
.
.

.

.

.r rr ing

“owo” is r rr rr r

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 53 / 64

Braille

Braille

ALPHABET AND NUMBERS
1 2 3 4 5 6 7 8 9 0
a b c d e f g h i j
.
.
.

.

.

.

r .
.
.

.

.

.

rr .
.
.

.

.

.

r r .
.
.

.

.

.

r rr .
.
.

.

.

.

r r .
.
.

.

.

.

rr r .
.
.

.

.

.

rr rr .
.
.

.

.

.

rr r .
.
.

.

.

.
r r .

.

.

.

.

.
r rr

k l m n o p q r s t
.
.
.

.

.

.

rr .
.
.

.

.

.

rrr .
.
.

.

.

.

rr r .
.
.

.

.

.

rr rr .
.
.

.

.

.

rr r .
.
.

.

.

.

rrr r .
.
.

.

.

.

rrr rr .
.
.

.

.

.

rrr r .
.
.

.

.

.
rr r .

.

.

.

.

.
rr rr

u v x y z w
.
.
.

.

.

.

rr r .
.
.

.

.

.

rrr r .
.
.

.

.

.

rr rr .
.
.

.

.

.

rr rrr .
.
.

.

.

.

rr rr .
.
.

.

.

.
r rrr

STRONG GROUPSIGNS
.
.
.

.

.

.

r r ch
.
.
.

.

.

.

rr r gh
.
.
.

.

.

.

r rr sh
.
.
.

.

.

.

rr rr ed
.
.
.

.

.

.

r rrr th
.
.
.

.

.

.

rr rrr er
.
.
.

.

.

.

r rr wh
.
.
.

.

.

.
r rr ow

.

.

.

.

.

.

rr rr ou
.
.
.

.

.

.r rr ar
.
.
.

.

.

.r r st
.
.
.

.

.

.r rr ing

“owo” is r rr rr r

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 53 / 64

Huffman Coding

Huffman Coding

More frequent characters get
shorter encodings
Used in .zip files and other
compression algorithms
Won’t go over details due to time

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 54 / 64

3SUM-Hardness

3SUM-Hardness

3SUM: given n numbers, can you find 3 that sum to 0?
Solvable in O(n2) by hashing
Assumed to not have a (significantly) faster solution
Some problems are at least as hard to solve as 3SUM, and are called 3SUM-hard

Given lines in a plane, do any 3 intersect at a point?
Given triangles in a plane, does their union have a hole?

Proof says, for any 3SUM instance, do some fast algorithm to transform into a
3SUM-hard instance whose solution matches the orignal problem

Note: If numbers are integers in [−N , N], solvable in O(n + N log N) via FFT

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 55 / 64

3SUM-Hardness

3SUM-Hardness

3SUM: given n numbers, can you find 3 that sum to 0?
Solvable in O(n2) by hashing
Assumed to not have a (significantly) faster solution
Some problems are at least as hard to solve as 3SUM, and are called 3SUM-hard

Given lines in a plane, do any 3 intersect at a point?
Given triangles in a plane, does their union have a hole?

Proof says, for any 3SUM instance, do some fast algorithm to transform into a
3SUM-hard instance whose solution matches the orignal problem
Note: If numbers are integers in [−N , N], solvable in O(n + N log N) via FFT

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 55 / 64

How Often Should You Beat Your Kids?

VOL. 63, NO. 2, APRIL 1990 89

How Often Should You Beat Your Kids?

DON ZAGIER
University of Maryland

College Park, MD 20742

A result is proved which shows, roughly speaking, that one should beat one's
kids every day except Sunday.

This note is a follow-up to the note "How to Beat Your Kids at Their Own Game,"
by K. Levasseur [1], in which the author proposes the following game to be played
against one's two-year-old children: Starting with a deck consisting of n red cards and
n black cards (in typical applications, n = 26), the cards are turned up one at a time,
each player at each stage predicting the color of the card which is about to appear.
The kid is supposed to guess "Red" or "Black" randomly with equal probability (this
solves the problem of constructing a perfect random number generator), while you
play what is obviously the optimal strategy-guessing randomly (or, if you prefer,
always saying "Black") whenever equal numbers of cards of both colors remain in the
deck and otherwise predicting the color which is currently in the majority. Levasseur
analyzes the game and shows that on the average you will have a score of n + (VFW -

1)/2 + O(n- 1/2), while the kid, of course, will have an average score of exactly n.
We, however, maintain that only the most degenerate parent would play against a

two-year-old for money, and that our concern must therefore be, not by how much
you can expect to win, but with what probability you will win at all. Our principal
result is that this probability tends asymptotically to 85.4% (more precisely: to
1/2 + 1/ F8) as n tends to infinity. This shows with what unerring instinct Lev-
asseur's mother selected the game-the high 85% loss rate will instill in the young
progeny a due respect for the immense superiority of their parents, while the 15% win
rate will maintain their interest and prevent them from succumbing to feelings of
hopelessness and frustration.

The analysis begins as in Levasseur's article: each of the (2n) possible orderings of
the cards into red and black elements corresponds to a path p moving downwards
and leftwards from an initial value (R, B) = (n, n) to a final value (R, B) = (0, 0) of
the pair (R, B), where R and B denote the numbers of red and black cards
remaining, respectively. If this path meets the diagonal R = B a total of m(p) times,
where the initial point at (n, n) is counted but the final point at (0, 0) is not, then the
expected win of the parent is m(p)/2. Indeed, at each meeting point the parent
guesses randomly, with an expected score of 1/2 and hence an expected win over his
child of 0; between each pair of meeting points, the parent will consistently guess
"Red" or consistently "Black," depending on whether p is now below or above the
diagonal, and will be right exactly one more time than he is wrong, gaining exactly
half a point over his randomly guessing child. Levasseur shows that the average value
of m(p), as p ranges over the set ;n of paths as described above, is exactly
4f/(2n)- 1, leading to the result on the expected win stated above. To solve the
problem we have set ourselves, we must answer two questions:
-(i) for a given value of m(p), what is the probability of winning? and
-(ii) with what probability will m(p) take on a given value m, 1 < m < n?

We answer the second question first.

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 56 / 64

How Often Should You Beat Your Kids?

92 MATHEMATICS MAGAZINEE

Since k/ xn is almost always very near to 'm/ x/W, the probability of winning when
m(p) = m is very nearly equal to

1 + 1 m/2F 2
? Ie-u du.

Multiplying this by the probability that m(p) = m as computed above, we find finally

probability of winning ? -f 1 f
m/2r e du)

P Y g 2 mE-O~0 x 2n x(F - U2

2+ | 2x e X /4
n(l/ Ee- du) dx

1 fx/2

2~
2

+2 xe- x /4(- e-u du dx 2 2 n/ l j 0)

1 1 00 2(fOO2 \
I +e-uI xe-x/4dxl du

2 2/ O I (2u)d
- + le-U2(2e-u)du

1 1

2+ 2 /'

as claimed. This is very nearly 6/7, so the result of our paper can be conveniently
implemented by beating one's kids on weekdays and Saturdays, but never on Sunday.

R E F E R E N C E

1. Kenneth M. Levasseur, How to Beat Your Kids at Their Own Game, this MAGAZINE 61 (1988), 301-305.

A Note on the Five-Circle Theorem

JORDAN B. TABOV
Institute of Mathematics
Bulgarian Academy of Sciences
P.O. Box 373
1090 Sofia, Bulgaria

In his paper [1] H. Demir stated and proved

THE FIVE-CIRCLE THEOREM. Let P and Q be two points on the side BC of a triangle
ABC in the order B, P, Q, C. If the triangles ABP, APQ, AQC have congruent
incircles, then the triangles ABQ, APC have congruent incircles.

He also asked for a geometric proof of this theorem.
Here we give such a proof for the following more general

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 57 / 64

Tortoise and Hare The Cycle Finding Problem

Tortoise and Hare: The Cycle Finding Problem

Take some function f : [n] → [n],
and some starting value x .

Notation: [n] is the numbers
{1, . . . , n}, and f is a function that
takes a number from [n], and
outputs a number in [n]

By pidgeonhole principle, the sequence
x , f (x), f (f (x)), . . . , f i(x), . . .
will repeat
Find s, t such that f s(x) = f s+t(x)

xf (x)

f (f (x))

f s(x)

f s+1(x)

f t−2(x)

f t−1(x)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 58 / 64

Tortoise and Hare The Cycle Finding Problem

Tortoise and Hare: The Cycle Finding Problem

Take some function f : [n] → [n],
and some starting value x .

Notation: [n] is the numbers
{1, . . . , n}, and f is a function that
takes a number from [n], and
outputs a number in [n]

By pidgeonhole principle, the sequence
x , f (x), f (f (x)), . . . , f i(x), . . .
will repeat

Find s, t such that f s(x) = f s+t(x)

xf (x)

f (f (x))

f s(x)

f s+1(x)

f t−2(x)

f t−1(x)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 58 / 64

Tortoise and Hare The Cycle Finding Problem

Tortoise and Hare: The Cycle Finding Problem

Take some function f : [n] → [n],
and some starting value x .

Notation: [n] is the numbers
{1, . . . , n}, and f is a function that
takes a number from [n], and
outputs a number in [n]

By pidgeonhole principle, the sequence
x , f (x), f (f (x)), . . . , f i(x), . . .
will repeat
Find s, t such that f s(x) = f s+t(x)

xf (x)

f (f (x))

f s(x)

f s+1(x)

f t−2(x)

f t−1(x)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 58 / 64

Tortoise and Hare Floyd’s Algorithm

Tortoise and Hare: Floyd’s Algorithm

Algorithm description
Tortoise and hare start with
xt := x and xh := x .
When tortoise computes xt := f (xt),
hare computes xh := f (f (xh)).

Algorithm analysis

Eventually both tortoise and hare
will enter the cycle
When both are in the cycle, the hare
will catch up to the tortoise

Used in Pollard’s rho algorithm

xf (x)

f (f (x))

f s(x)

f s+1(x)

f t−2(x)

f t−1(x)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 59 / 64

Tortoise and Hare Floyd’s Algorithm

Tortoise and Hare: Floyd’s Algorithm

Algorithm description
Tortoise and hare start with
xt := x and xh := x .
When tortoise computes xt := f (xt),
hare computes xh := f (f (xh)).

Algorithm analysis
Eventually both tortoise and hare
will enter the cycle
When both are in the cycle, the hare
will catch up to the tortoise

Used in Pollard’s rho algorithm

xf (x)

f (f (x))

f s(x)

f s+1(x)

f t−2(x)

f t−1(x)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 59 / 64

Tortoise and Hare Floyd’s Algorithm

Tortoise and Hare: Floyd’s Algorithm

Algorithm description
Tortoise and hare start with
xt := x and xh := x .
When tortoise computes xt := f (xt),
hare computes xh := f (f (xh)).

Algorithm analysis
Eventually both tortoise and hare
will enter the cycle
When both are in the cycle, the hare
will catch up to the tortoise

Used in Pollard’s rho algorithm

xf (x)

f (f (x))

f s(x)

f s+1(x)

f t−2(x)

f t−1(x)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 59 / 64

Tortoise and Hare Pollard’s Kangaroo

Tortoise and Hare: Pollard’s Kangaroo

How Long Does it Take to Catch a Wild Kangaroo?

Ravi Montenegro ∗ Prasad Tetali †

November 7, 2010

Abstract

We develop probabilistic tools for upper and lower bounding the expected time until two in-
dependent random walks on Z intersect each other. This leads to the first sharp analysis of
a non-trivial Birthday attack, proving that Pollard’s Kangaroo method solves the discrete log-
arithm problem gx = h on a cyclic group in expected time (2 + o(1))

√
b− a for an average

x ∈ [a, b]. Our methods also resolve a conjecture of Pollard’s, by showing that the same bound
holds when step sizes are generalized from powers of 2 to powers of any fixed n.

1 Introduction

Probabilistic “paradoxes” can have unexpected applications in computational problems, but math-
ematical tools often do not exist to prove the reliability of the resulting computations, so instead
practitioners have to rely on heuristics, intuition and experience. A case in point is the Kruskal
Count, a probabilistic concept discovered by Martin Kruskal and popularized in a card trick by
Martin Gardner, which exploits the property that for many Markov chains on Z independent walks
will intersect fairly quickly when started at nearby states. In a 1978 paper John Pollard applied the
same trick to a mathematical problem related to code breaking, the Discrete Logarithm Problem:
solve for the exponent x, given the generator g of a cyclic group G and an element h ∈ G such that
gx = h.

Pollard’s Kangaroo method is based on running two independent random walks on a cyclic
group G, one starting at a known state (the “tame kangaroo”) and the other starting at the
unknown but nearby value of the discrete logarithm x (the “wild kangaroo”), and terminates after
the first intersection of the walks. As such, in order to analyze the algorithm it suffices to develop
probabilistic tools for examining the expected time until independent random walks on a cyclic
group intersect, in terms of some measure of the initial distance between the walks.

Past work on problems related to the Kruskal Count seem to be of little help here. Pollard’s
argument of [5] gives rigorous results for specific values of (b− a), but the recurrence relations he
uses can only be solved on a case-by-case basis by numerical computation. Lagarias et.al. [2] used
probabilistic methods to study the distance traveled before two walks intersect, but only for walks
in which the number of steps until an intersection was simple to bound. Although our approach
here borrows a few concepts from the study of the Rho algorithm in [1], such as examining the
expected number of intersections and some measure of its variance, a significant complication in
studying this algorithm is that when b − a � |G| the kangaroos will have proceeded only a small

∗Department of Mathematical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA. Email:
ravi montenegro@uml.edu; part of this work was done while the author was at The Tokyo Institute of Technology.
†School of Mathematics and College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA.

Email: tetali@math.gatech.edu; research supported in part by NSF grants DMS 0401239, 0701043.

1

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 60 / 64

Primal Duel

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 61 / 64

Primal Duel

Primal Duel

Optimization problems
Find minimum/maximum of objective function
Variables must satisfy constraints

Initial formulation called the “primal”
There is a transformation that moves primal constraints into objective function
terms, and moves primal objective function terms into constraints

The resulting formulation is called the “dual”
Some optimization algorithms switch between primal and dual formulations

Primal-dual methods

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 62 / 64

Dominators

Dominators

Analysis of control-flow graphs
Node A dominates B if any path from the entry
node to B must pass through A.
Any node dominates itself; to exclude this case,
use strict dominance.
Strict dominance cannot have a cycle

Suppose A dominates B
Take a path to B with no cycles
Shorten this path so it ends at A
This is a path from the entry node to A that
doesn’t pass through B.

The strict dominance graph can be top-sorted

entry

A

B

C

D

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 63 / 64

Dominators

Dominators

Analysis of control-flow graphs
Node A dominates B if any path from the entry
node to B must pass through A.
Any node dominates itself; to exclude this case,
use strict dominance.
Strict dominance cannot have a cycle

Suppose A dominates B
Take a path to B with no cycles
Shorten this path so it ends at A
This is a path from the entry node to A that
doesn’t pass through B.

The strict dominance graph can be top-sorted

entry

A

B

C

D

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 63 / 64

EOM

Data Structures & Algorithms @ ANE 2026
The Dominance Frontier

Bunsen Bitti, Unsigned Long

January 17, 2026

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 64 / 64

	Overview
	How I Found the Fandom (Unsigned Long)
	How I Found the Fandom (Bunsen)
	Fursuits are Planar Graphs
	Alphabet Trees
	Macro-Micro Tree Decomposition
	Instruction Set Architecture
	x86 ISA
	x86 ISA
	x86 ISA
	x86 ISA
	x86 ISA
	x86 ISA
	KNOTD
	Fast Furrier Transform
	Polynomials
	Multiplication
	Polynomial Interpolation/Evaluation
	Evaluation at ±1
	Roots of Unity
	Odd/Even Trick
	Divide and Conquer
	Inverse FFT?

	E621 Programming Language Tags
	Animal Computing Mascots
	Trans Rights!
	Unofficial Mascot of C++
	Powershell...
	WSL

	O'Reilly Book Covers
	O'RLY Book Covers
	Protogen Disconnect
	Twisted Pair/Coaxial Cable
	Morse Code
	Braille
	Huffman Coding
	3SUM-Hardness
	How Often Should You Beat Your Kids?
	Tortoise and Hare
	The Cycle Finding Problem
	Floyd's Algorithm
	Pollard's Kangaroo

	Primal Duel
	Dominators
	EOM

