Data Structures & Algorithms @ ANE 2026

The Dominance Frontier

Bunsen Bitti, Unsigned Long

January 17, 2026

OFfp0

[x]

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 1/64

Overview

@ This is a comedic/informative look at overlaps
between furry and computer science
e This is not a rigorous lecture
o There will be puns “w”
@ Don't worry if our jokes don't make sense!
o We've been coding for most of our lives
o If you're confused, that's on us
o We're out of touch with reality
@ If you are curious about anything in these slides,
feel free to chat with us!

January 17, 2026 2/64

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026

How | Found the Fandom (Unsigned Long)

sﬂvergatomon
(@silvergatomon rs - 1K videos

e Found furries through con videos

on and 2 more links

£\ subscribed

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 3/64

How | Found the Fandom (Unsigned Long)

e Found furries through con videos

@ Found some eastern dragons with the
word “Long” in their name

Tien Long

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 3/64

How | Found the Fandom (Unsigned Long)

| /
e Found furries through con videos \g

@ Found some eastern dragons with the
word “Long” in their name

@ Thought about “long” for too long

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 3/64

How | Found the Fando 3]

How | Found the Fandom (Unsigned Long)

e Found furries through con videos

@ Found some eastern dragons with the

word “Long” in their name

@ Thought about “long” for too long

@ Realized it's in my code

Bunsen Bitti, Unsi d Long

long int
signed long

signed long int

unsigned long

unsigned long int

Data Structures & Algorithms @ ANE 2026

Short signed integer type. Capable of containing at
least the i 67] range.

Short unsigned integer type. Contains at least the
0. range

Basic signed integer type. Capable of containing at
least the [32 i 767] range

Basic unsigned integer type. Contains at least the
[o. range

Long signed integer type. Capable of containing at
7.+2 147 483 647] range.

Long unsigned integer type. Capable of containing at
least the [0, 4 2 9

967 29

January 17, 2026

3/64

How | Found the Fandom (Unsigned Long)

How | Found the Fandom (Unsigned Long)

Found furries through con videos

Found some eastern dragons with the
word “Long" in their name

Thought about “long” for too long

Realized it's in my code

Pun was too good to do nothing with,
so | made a fursona

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 3/64

How | Found the Fandom (Bunsen)

How | Found the Fandom (Bunsen)

@ FNAF made me a bunny-obsessed
furry back in 6th grade

artist: thepipefox (FurAffinity)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 4/64

How | Found the Fandom (Bunsen)

@ FNAF made me a bunny-obsessed
furry back in 6th grade

@ Started in algorithms, moved to
hardware and performance engineering

artist: @Alextheyellowthing (Telegram)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 4/64

How | Found the Fandom (Bunsen)

ProtoFacer: FPGA-Driven Interactive Protogen Head

ot sbmitied for MIT' 62050 Digial Sysems Labrstory course.

@ FNAF made me a bunny-obsessed
furry back in 6th grade

1L PHYSICAL CONSTRUCTION
A, Head Design

@ Started in algorithms, moved to
hardware and performance engineering

@ Made an FPGA-controlled protogen for
a final project because why not

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 4/64

Fursuits are Planar Graphs

Fursuits are Planar Graphs

Bunsen's head pattern Unsigned Long's tail pattern

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 5/64

Fursuits are Planar Graphs

e Graph:
o Vertices labeled 1,2,... n
o Edges go between two vertices
e At most n-(n—1)/2 edges?

aAssuming simple graphs

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026

January 17, 2026

6/64

Fursuits are Planar Graphs

e Graph:

o Vertices labeled 1,2,... n
o Edges go between two vertices
o At most n-(n—1)/2 = O(n?) edges?

aAssuming simple graphs

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026

January 17, 2026

6/64

Fursuits are Planar Graphs

e Graph:

o Vertices labeled 1,2,... n
o Edges go between two vertices
o At most n-(n—1)/2 = O(n?) edges?

@ Planar graphs: graphs that can be
drawn without crossing edges
o At most 3n — 6 = O(n) edges!?
o Fursuits are planar graphs
e Seam count = O(Fabric patch count)

aAssuming simple graphs
bAssuming faces have degree > 3

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026

Z N

)
N

January 17, 2026

6/64

Alphabet Trees

Trees!

@ Trees are the building block of

most data structures. 0 °

@ Every node has one parent,
except for the root which has

o arnt @O O

@ Nodes with no children are
leaves, nodes with children are ° G c
internal nodes.
By Paddy3118 - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=83223854

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 7/64

A-Z of Trees (non-exhaustive)

AVL Trees k-d Tree

B Trees Link-Cut Tree

Cartesian Trees Merkle Trees Universal B Trees
Decision Tree N Tree Vantage Point Tree
Exponential Trees Order Statistics Tree Wallace Tree
Fenwick Trees PQ Tree X-fast Trie
Gomory-Hu Tree Quadtree Y-fast Trie

H-Tree Red Black Trees Zip Trees

Interval Tree Splay Trees

Judy Array Tango Trees

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 8/64

Subseetions Subtrees

@ ARSTZ : Balanced Binary Search Trees (BST)
BCMUXY : Other Binary Trees

IKQV : Spatial Data Structures
EFGJLP : Niche data structures

DHNOW : Non-data structures

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 9/64

Subseetions Subtrees

@ ARSTZ : Balanced Binary Search Trees (BST)
BCMUXY : Other Binary Trees

IKQV : Spatial Data Structures
EFGJLP : Niche data structures

DHNOW : Non-data structures

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 10/ 64

AVL Trees!

e First O(log n) self-balancing
binary search tree!

@ Ensures the height of its
children do not differ by > 1

https://commons.wikimedia.org/w/index.php?curid=49182185

! Adelson-Velsky, Georgy; Landis, Evgenii (1962)
Data Structures & Algorithms @ ANE 2026 January 17, 2026 11/64

AVL Trees (Rotation)

@ Imbalances are fixed by
rotations, fundamental

local operations for many
balanced BSTs

GET ROTATED
10I0T

/r/furry_irl/comments/1dumfg3/

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 12 /64

Alphabet Trees

AVL Trees (Rotation)

@ Imbalances are fixed by
rotations, fundamental
local operations for many
balanced BSTs

Bunsen Bitti, Unsigned Long

+2
Left Right Case

"

N

Balanced

https://pages.cs.wisc.edu/~qingyi/

Data Structures & Algorithms @ ANE 2026

January 17, 2026

N

13/64

Red Black Tree?

e Balanced BST, red-black coloring
chosen because it looked best on the
laser printer they used.

@ All root-to-leaf paths have the same
number of black nodes

@ No red node has a red parent

https://pages.cs.wisc.edu/~wyoungjun/

2Guibas, Leonidas J.; Sedgewick, Robert (1978).
Data Structures & Algorithms @ ANE 2026 January 17, 2026 14 /64

Splay?

splay 10r3 verb
spla

splayed; splaying; splays

Synonyms of splay >

transitive verb

1 :to cause to spread outward

2 :to make oblique : BEVEL

intransitive verb

1 :to extend apart or outward especially in an awkward manner

https://en.wikifur.com/wiki/Furpile

2 :SLOPE, SLANT

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 15 /64

Splay Tree3

@@-% 5
A
: AQA 4O
o After every operation, splay the A s e
searched node to the root of the tree @B LEINNO]
) . @) A O,
using double-rotations. ®h » 0
. S LS
@ Suspected to be optimal for any
: @ = @
sequence of BST operations up to a ®®Z} =
constant factor (Dynamic Optimality A @A A Bc®§
Conjecture) g4

Trabelsi, Zouheir & Zeidan, Safaa & Masud, Mehedy & Ghoudi, Kilani.

(2015). Statistical Dynamic Splay Tree Filters.

3Sleator, Daniel D.; Tarjan, Robert E. (1985).
Data Structures & Algorithms @ ANE 2026 January 17, 2026 16 /64

Alphabet Trees

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026

Link-Cut Tree*

@ Maintains a set of rooted trees

e Amortized O(log n) link, cut
and find-root at any node

@ Improves Dinic’'s Algorithm :
(for max-flow) from O(V?2E) AD

— e ferred edges | J I

to O(VE log V). ormal cdges oo e

— — — = path — parent edges

By Drrilll, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=25495327

“Sleator, D. D.; Tarjan, R. E. (1983).
Data Structures & Algorithms © ANE 2026 January 17, 2026 18 /64

Decision Trees

Minimum systolic blood
pressure over 24 h period > 917

@ Each node represents a query, each leaf 0 §
represents a category/decision. high risk

@ Commonly used in decision analysis
and machine learning

Is sinus tachycardia
present?

@ Fuzzy Decision Trees are also a thing 19
low risk

MIT 6.390 Intro ML Course Notes and Breiman, Friedman, Olshen, Stone (1984)

es

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 19 /64

(Furry) Decision Trees (r/furry/comments/4gxm01/)

What iy your fursona?

Are you very active?
/ N

Introverted Extroverted Yi/ \N:
Can you charm your Are you more cunning
Are you quite Do you crave way out of things? or resourceful?
ambitious? companionship?
Yes Cunning,
No
" ves/ [| Resourceful
Do you wear your No Do you have
B heart on your sleeve? expensive taste?
e [v e
DOG HORSE DRAGON BEAR

Bunsen Bitti, Unsigned Lon Data Structures & Algorithms @ ANE 2026 January 17, 2026

20 /64

Missing N-tree

@ Seriously | could not find any tree data structure that starts with N

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 21 /64

Tree Decomposition

@ Breaks down a rooted tree
into smaller subparts to more
efficiently solve subproblems

@ Heavy-Light Decomposition

o Separates edges into heavy
(> 1/2 subtree size) and
light (< 1/2 subtree size).

e Every path from root to
leaf contains < loga(n)
light edges.

https://www.naukri.com/code360/1library/heavy-light-decomposition-hld

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 22 /64

Macro-Micro Tree Decomposition

Macro-Micro Tree Decomposition

@ Node is micro if it has less than O(log(n))
descendants (else macro)

@ Node is macro leaf if it is macro and all its
children are micro
@ Subtree is microtree if its parent is a macro leaf
@ There are at most O(n/ log(n)) macro leaves
e Macro leaves have O(log(n)) decendants, and
do not share decendants
@ There are O(n*/<) distinct microtree shapes

o Tree shape count is exponential in node count
o Number of microtree nodes is logarithmic in n
o log and exp cancel out to O(n'/€)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 23 /64

Instruction Set Architecture

Instruction Set Architecture

@ CPU Programs = lots of instructions that the CPU steps through to execute
@ ISA is how the CPU interprets those instructions.

@ Examples: x86, RISC-V etc.

@ There are a lot of instructions.

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 24 /64

x86 ISA

ADD — Add
Opcode Instruction Op/En 64-bit Mode Compat/Leg Mode Description
04 ib ADD AL, imm8 1 Valid Valid Add imma8 to AL.
05iw ADD AX, imm16 1 Valid Valid Add imm16 to AX.
05id ADD EAX, imm32 1 Valid Valid Add imm32 to EAX.
REXW +05id ADD RAX, imm32 1 Valid N.E. Add imm32 sign-extended to 64-bits to RAX.
80/0ib ADD r/m8, imm8 MI Valid Valid Add imma8 to r/m8.
REX +80 /0 ib ADD r/msw, imm8 MIL Valid N.E. Add sign-extended imma3 to r/m8.
81 /0 iw ADD r/m16, imm16 MI Valid Valid Add imm16 to r/m16.
81/0id ADD r/m32, imm32 MI Valid Valid Add imm32 to r/m32.
REXW +81/0id ADD r/m64, imm32 MI Valid NE. Add imm32 sign-extended to 64-bits to r/m64.
83/0ib ADD r/m16, imm8 MI Valid Valid Add sign-extended imms8 to r/m16.
83/01ib ADD r/m32, imm8 MI Valid Valid Add sign-extended imm3 to r/m32.
REXW +83/0ib ADD r/m64, imm8 MI Valid N.E. Add sign-extended imms3 to r/m64.
00/r ADD r/m8, r8 MR Valid Valid Add r8 to r/m8.
REX +00 /r ADD r/ms”, 18" MR Valid N.E. Add r8 to r/m8.
0l/r ADD r/m16, r16 MR Valid Valid Add r16 to r/m16.
01/r ADD r/m32, r32 MR Valid Valid Add r32 to r/m32.
REXW + 01 /r ADD r/m64, r64 MR Valid N.E. Add r64 to r/m64.
02 /r ADD r8. 1/m8 RM Valid Valid Add r/m8 to r8.

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 25 /64

x86 ISA

x86 ISA

FADD/FADDP/FIADD — Add

Opcode Instruction
D8 /0 FADD m32fp
DC/0 FADD m64fp

D8 CO+i FADD ST(0), ST(i)
DCCO+i FADD ST(i), ST(0)
DE CO+i FADDP ST(i), ST(0)

DEC1 FADDP
DA /0 FIADD m32int
DE/0 FIADD m16int

64-Bit Mode Compat/Leg Mode
Valid Valid
Valid Valid
Valid Valid
Valid Valid
Valid Valid
Valid Valid
Valid Valid
Valid Valid

FMUL/FMULP/FIMUL — Multiply

Opcode Instruction
D8 /1 FMUL m32fp
DC/1 FMUL m64fp

D8 C8+i FMUL ST(0), ST(i)
DCC8+i FMUL ST(i), ST(0)
DE C8+i FMULP ST(i), ST(0)

DE C9 FMULP
DA/1 FIMUL m32int
DE/1 FIMUL m16int

Bunsen Bitti, Unsigned Lon

64-Bit Mode Compat/Leg Mode
Valid Valid
Valid Valid
Valid Valid
Valid Valid
Valid Valid
Valid Valid
Valid Valid
Valid Valid

Data Structures & Algorithms @ ANE 2026

Description
Add m32fp to ST(0) and store result in ST(0).
Add m64fp to ST(0) and store result in ST(0).
Add ST(0) to ST(i) and store result in ST(0).
Add ST(i) to ST(0) and store result in ST(i).
Add ST(0) to ST(i), store result in ST(i), and pop the register stack.
Add ST(0) to ST(1), store result in ST(1), and pop the register stack.
Add m32int to ST(0) and store result in ST(0).
Add m16int to ST(0) and store result in ST(0).

Description

Multiply ST(0) by m32fp and store result in ST(0).

Multiply ST(0) by m64fp and store result in ST(0).

Multiply ST(0) by ST(i) and store result in ST(0).

Multiply ST(i) by ST(0) and store result in ST().

Multiply ST(i) by ST(0), store result in ST(i), and pop the register stacl
Multiply ST(1) by ST(0), store result in ST(1), and pop the register stac
Multiply ST(0) by m32int and store result in ST(0).

Multiply ST(0) by m16int and store result in ST(0).

January 17, 2026

26 /64

x86 ISA

VADDPH — Add Packed FP16 Values

Instruction En Bit Mode Flag Support Instruction En Bit Mode Flag Support 64/32 CPUID Feature Instruction En Bit Mode Flag CPUID Feature Instruction En
Bit Mode Flag Op/ 64/32 CPUID Feature Instruction En Bit Mode Flag 64/32 CPUID Feature Instruction En Bit Mode Flag CPUID Feature Instruction En Bit Mode Support Description
Flag Op/ 64/32 CPUID Feature
Add packed FP16 value from xmm3/m128/m16best to

EVEX.128.NPMAP5.W0 58 /r VADDPH xmm1{1}{z}, xmm2, xmm3/m128/m16bcst A WV 2&;‘:;\2’ 6 xmm2, and store result in xmmi subject to writemask
KL
Avxsizppig Add packed FP16 value from ymm3/m256/mi6best to
‘EVEX.256.NPMAPS.WO0 58 /r VADDPH ymm1{k1}z}, ymmz, ymm3/m256/m16bcst A WV AVXS12VL ymm2, and store result in ymm1 subject to writemask
k1.
Add packed FP16 value from zmm3/m512/m16best to
EVEX.512.NPMAP5.WO 58 /r VADDPH zmm1{k1}{z}, zmm2, zmm3/m512/m16best {er} A VNV AVX512-FP16 zmm2, and store result in zmmi subject to writemask
KL

VMULPH — Multiply Packed FP16 Values

Instruction En bit Mode Flag Support Instruction En bit Mode Flag Support 64/32 CPUID Feature Instruction En bit Mode Flag CPUID Feature Instruction
En bit Mode Flag Op/ 64/32 CPUID Feature Instruction En bit Mode Flag 64/32 CPUID Feature Instruction En bit Mode Flag CPUID Feature Instruction En bit Support Description
Mode Flag Op/ 64/32 CPUID Feature
Multiply packed FP16 values from xmms3/m128/m16bcst

EVEX.128.NPMAP5.WO 59 /r VMULPH xmm1{k1}{z}, xmm2, xmm3/m128/m16best A VNV :g:ﬁvr; 16 to xmm2 and store the result in xmm1 subject to
writemask k1.
AVX512.Fpg Multiply packed EP16 values from ymms/m256/m16best
EVEX.256.NPMAP5.W0 59 /r VMULPH ymm1{k1}{z}, ymm2, ymm3/m256/m16bcst A VNV AVXS12VT to ymm2 and store the result in ymm1 subject to
} writemask k1.
Multiply packed FP16 values in zmm3/m512/m16best
EVEX.512.NPMAP5.W0 59 /r VMULPH zmm1{k1}{z), zmm2, zmm3/m512/m16best {er} A VWV AVX512-FP16 with zmma2 and store the result in zmm1 subject to

writemask k1.

Data Structures & Algorithms @ ANE 2026 January 17, 2026 27 /64

x86 ISA

x86 ISA

VFMADD132PH/VFNMADD132PH/VFMADD213PH/VENMADD213PH/VFMADD231PH/VFNMADD231PH — Fused Multiply-Add of Packed FP16 Values

Instruction En Bit Mode Flag Support Instruction En Bit Mode

En Bit Mode Flag CPUID Feature Instruction En Bit Mode Flag Op) 64/32

PUID
CPUID Feature Instruction En Bit Mode Flag 64732 CPUID Feature Instruction En Bt Mode Flag CPUID Feature Instruction En it Mode Flag Op/ 64332 CPUID Feature

EVEX.128.66 MAPGWO 98 /r 1K1Hz), xmm: /m128/m1Ghest
EVEX.256.66 MAPG WO 98 /r VFMADD132PH. ymm2,
EVEX 51266 MAP6WO 98 /r 3 K1}z, fer}

EVEX.128.66. MAPGWO A8 /r VEMADD213PH xmmi1{k1}z}, xmm2, xmm3/m128/m16best
EVEX.256.66 MAPGWO A8 /r VEMADD213PH ymm1{k1Hz], yrmm2, ymm3/m256/m16best

EVEX512.66 MAPGY VFMADD213PH zmm1 (k1}{2), zmm: fer)

EVEX.128.66.MAP6 WO B8 fr VEMADD231PH xmm1 (K1) {z), xmm
EVEX256.66 MAP6WO B8 fr VFMADD231PH ymm1{K1}z), ymm2, ymm3/m256/m16best

EVEX512.66.MAPGINO BS SUSHE fer}

EVEX.128.66 MAPGIWO 9C /r 1{K1Hz), smm:

EVEX 256,66 MAPGWO 9C /r VENMADDI32PH ymm1{K1}{z), ymm2, ymm3/m256/m16best

EVI

X.512.66 MAPGIWO 9C. k1)

EVEX.128.66.MAPEWO AC /&

xmmi{kiHz},

EVEX.256.66 MAPGWO AC/r

1K1}z), ymm2,

EVEX51266 MAPEWO. T mm1(k1}{z), zmm fer}
EVEX.128.66.MAP6 WO BC 1 VF! mm1(ki}(z), xm 3m128/m16best
EVEX 256,66 MAPEWO BC /r- 1(k1Hz), ymm2,
EVEX512.66.MAPGWO BC /r- 1K1, =

Bunsen Bitti, Unsigned Lon

>

Data Structures & Algorithms @ ANE 2026

Support

viv

v

W

W

W

viv

W

v

AVX512P16
AVX512TP16
121
AVXS12-FP16
AVX512P16
AVXS12VL
AVX512P16
AVXS12VL
AVX512TP16
AVXS12FP16
AVXS12VL
AVXS12FP16
WX512V]
AVX512P16
AVXS12.FP16
AVXS12VL
AVX512P16
AVXS12VL
AVXS12-FP16
AVXS12P16
AVXS12VL
AVXS12P16
AVXS12VL
AVX512TP16
AVXS12FP16
AVXS12VL
AVXS12FP16
AVXS12VL

AVX512P16

Description
Multiply packed FP16 values from xmm1 and xmm3/m128/m16best, add to
xmm2, and store the result in xmmi.

Multiply packed FP16 values from ymm1 and ymm3/m256/m16hest, add to
ymm2, and store the resul

Maultiply packed P16 values from zmm1 and zmm3/ms12/m16best,
2mm2, and store the result in zmm1

Multiply packed FP16 values from xmm1 and xmm2, add to xmm3/m126/
mi6best, and store the resultin xmm1.

Multiply packed EP16 values from ymm1 and ymm, add to ymm3/m236/
‘m16best, and store the result in ymm,

Multiply packed FP16 values from zmmi1 and zmm2, add to zmm3/ms12/
mi6best, and store the result in zmm1.

Maultiply packed FP16 values from xmm2 and xmm3/m128/m16bcst, add to
xmimi, and store the result in xmm

addto

Maultiply packed EP16 values from ymmz2 and ymm3/m256/m16best, add to
ymmi, and store the resultin ymm1.
Muluplypacked FP16 values from zmm2 and zmm3/m512/m16best, add to
and store the result in zmm
M\lluply packed FP16 values from xmm1 and xmm3/m128/m16hest, and
‘negate the value. Add this value to smm2, and store the resultin xmml.
Multiply packed FP16 values from ymm1 and ymm3/m256/m16hest, and
‘negate the value. Add this value to ymm, and store the resultin ymm1.
Multiply packed FP16 values from zmm1 and zmm3/ms12/m16best, and
negate the value. Add this value to zmm2, and store the result in zmm1.
Multiply packed FP16 values from xmm1 and xmm2, and negate the value
‘Add this value to xmm3/m128/m16best, and store the result in xmm.
Multiply packed FP16 values from ymm1 and ymmz, and negate the value.
‘Add this value to ymm3/m256/m16bcst, and store the result in ymmi
Multiply packed FP16 values from zmm1 and zmm, and negate the value.
this value to zmm3/ms12/m16best, and store the result in zmm}
Multiply packed FP16 values from xmm2 and xmm3/m128/m16best, and
‘negate the value. Add this value to xmmi, and store the resultin xmum1.
Multiply packed FP16 values from ymm2 and ymm3/m256/m16best, and
negate the value. Add this value to ymm1, and store the result in ymm1.
Multiply packed FP16 values from zmm2 and zmm3/ms12im16bst, and
negate the value. Add this value to zmm1, and store the resultin zmm1

January 17, 2026

add

28 /64

x86 ISA

VFMADDSUB132PH/VFMADDSUB213PH/VFMADDSUB231PH — Fused Multiply-AlternatingAdd/Subtract of
Packed FP16 Values

Instruction En Bit Mode Flag Support Instruction En Bit Mode Flag Support 64/32 CPUID Feature Instruction En Bit Mode Flag
CPUID Feature Instruction En Bit Mode Flag Op/ 64/32 CPUID Feature Instruction En Bit Mode Flag 64/32 CPUID Feature Support Description
Instruction En Bit Mode Flag CPUID Feature Instruction En Bit Mode Flag Op/ 64/32 CPUID Feature
AvXs12.pp1g | Multiply packed FP1G values from xmm1 and xmm3/m128/
EVEX.128.66.MAP6:WO 96 /r VFMADDSUB132PH xmm1{k1}{z}, xmm2, xmm3/m128/m16bcst A VN m16best, add/subtract elements in xmmz, and store the

AVX512VL result in xmm1 subject to writemask k1.
sxs1orpte | Multiply packed FP16 values from ymm and ymm3/m256/
EVEX.256.66.MAP6.WO 96 /r VEMADDSUB132PH ymm1{k1}z}, ymm2, ymms3/m256/m16bcst A Vv AVXAL2VL, m16best, add/subtract elements in ymma, and store the

result in ymm1 subject to writemask k1.
Multiply packed FP16 values from zmm1 and zmm3/m512/
EVEX.512.66.MAP6.WO0 96 /r VEMADDSUB132PH zmm1{K1}{z}, zmm2, zmm3/m512/m16bcst {er} A VNV AVX512-FP16 m16best, add/subtract elements in zmm2, and store the
result in zmm1 subject to writemask K1.
avxsizrpie Multiply packed FP16 values from xmm1 and xmm2, add/
EVEX.128.66.MAP6.W0 A6 /r VFMADDSUB213PH xmm1{k1}{z}, xmm2, xmm3/m128/m16bcst A VNV AVX512VL subtract elements in xmm3/m128/m16hcst, and store the
result in xmm1 subject to writemask k1.
Multiply packed FP16 values from ymm1 and ymm2, add/
subtract elements in ymm3/m256/m16bcst, and store the
result in ymm1 subject to writemask k1.

AVX512-FP16

EVEX.256.66.MAP6.W0 A6 /r VFMADDSUB213PH ymm1{k1}{z}, ymm2, ymm3/m256/m16bcst A VNV AVX512VL

Multiply packed FP16 values from zmm1 and zmm2, add/
EVEX.512.66.MAP6.WO0 A6 /r VEMADDSUB213PH zmm1{k1}{z}, zmm2, zmm3/m512/m16bcst {er} A VY AVX512-FP16 subtract elements in zmm3/m512/m16bcst, and store the
result in zmm1 subject to writemask k1.
AVXS12-EP16 Multiply packed FP16 values from xmm2 and xmm3/m128/
EVEX.128.66.MAP6.W0 B6 /r VEMADDSUB231PH xmm1{k1}{z}, xmm2, xmm3/m128/m16bcst A VNV AVXS12VL m16best, add/subtract elements in xmm1, and store the
result in xmm1 subject to writemask k1.
avxsizrpie Multiply packed FP16 values from ymm2 and ymm3/m256/
EVEX.256.66.MAP6.W0 B6 /r VEMADDSUB231PH ymm1{k1}{z}, ymm2, ymm3/m256/m16bcst A YV AVXSI2VL mi6best, add/subtract elements in ymmd, and store the
result in ymm1 subject to writemask k1.
Multiply packed FP16 values from zmm2 and zmm3/m512/
EVEX.512.66.MAP6.WO B6 /r VEMADDSUB231PH zmm1{k1}{z}, zmm2, zmm3/m512/m16best {er} A VNV AVX512-FP16 mi6best, add/subtract elements in zmm1, and store the

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 29 /64

x86 ISA

Notation Odd Elements Even Elements
132 dest = dest*src3+src2 dest = dest™src3-src2
231 dest = src2*src3+dest dest = src2*src3-dest

213 dest = src2*dest+src3 dest = src2*dest-src3

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026

January 17, 2026 30/ 64

KNOTD

KNOTD

KNOTW/KNOTB/KNOTQ/KNOTD—NOT Mask Register

Opcode/ Op/En
Instruction

VEX.LO.OFWO 44 /r RR
KNOTW k1, k2

VEX.L0.66.0F.WO0 44 /r RR
KNOTB k1, k2

VEX.LO.OFW1 44 /r RR
KNOTQk1, k2

VEX.LO.66.0FW1 44 /r RR
KNOTD k1, k2

64/32
bit Mode
Support
VIV

VIV

VIV

VIV

CPUID
Feature Flag

AVX512F
AVX512DQ
AVX512BW

AVX512BW

Description

Bitwise NOT of 16 bits mask k2.

Bitwise NOT of 8 bits mask k2.

Bitwise NOT of 64 bits mask k2.

Bitwise NOT of 32 bits mask k2.

NeedsMoreGPUs -+ 4y ago
i ':I Two Star Pixel Defender

Of course it's AVX512. AVX512 is the most degenerate instruction set.

f 7 &> Share

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026

31/64

Fast Furrier Transform

@ Fourier Transform?

o Typically computed with complex numbers
e Transform signal between time and frequency domain

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026

January 17, 2026

32/64

Fast Furrier Transform

@ Fourier Transform?

o Typically computed with complex numbers
e Transform signal between time and frequency domain

@ This is not a math panel!

o See this 3BluelBrown video:
“But what is the Fourier Transform? A visual introduction.” —

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026

January 17, 2026

32/64

Fast Furrier Transform

@ Fourier Transform?

o Typically computed with complex numbers
e Transform signal between time and frequency domain

@ This is not a math panel!

o See this 3BluelBrown video:
“But what is the Fourier Transform? A visual introduction.” —

@ This is an algorithms panel :3
o We will use FFT to multiply polynomials in O(nlog n) time

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026

January 17, 2026

32/64

Polynomials
Fast Furrier Transform: Polynomials

&

[coefficient] ~ [term]

A L2 |
on; =3 / /
F(1) =2
) - 1 A .
f(3)=0 (3,0)

Evaluating a polynomial at a point

R e

])

takes O(n) time

Data Structures & Algorithms @ ANE 2026

January 17, 2026 33 /64

Muliplicaion
Fast Furrier Transform: Multiplication

f(x) =3 +2x —4x> + x°

gx)=2 —x +x°
h(x) = f(x) - g(x) =6+ x — 7x?> + 8x3 — 5x* + x5

Multiplying two polynomials of degree n by distributing takes O(n?) time

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 34 /64

Fast Furrier Transform Polynomial Interpolation/Evaluation

Fast Furrier Transform: Polynomial Interpolation/Evaluation

@ For a set of n points, there is a unique (€ T /
polynomial with degree less than n
that passes through all the points (1,2) /

e Evaluating the polynomial at n / /
different x values to find these points

typically takes O(n?) time / \

@ If we choose the x values cleverly, we
can do better

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 35 /64

Evaluation at 1
Fast Furrier Transform: Evaluation at +1

F(X) = ap+ ax + ax> 4 asx> + -+ + ap_ox" 2 4 ap_1x" !

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 36 /64

Evaluation at 1
Fast Furrier Transform: Evaluation at +1

F(X) = ap+ ax + ax> 4 asx> + -+ + ap_ox" 2 4 ap_1x" !

fl)=ay+a+a+as+---+ap2+an
f(—l):ao—a1+ag—33+~--—i-a,,_2—a,,_1

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026

36 /64

EESRSGITIENE Ml Evaluation at +1

Fast Furrier Transform: Evaluation at +1

F(X) = ap+ ax + ax> 4 asx> + -+ + ap_ox" 2 4 ap_1x" !

fl)=ay+a+a+as+---+ap2+an
f(—l):ao—a1+ag—33+~--—i-a,,_2—a,,_1

f(1)=(ao+a+-+a,2)+(a+a+-+a,1)
f(_l):(aO+a2+"'+anf2)_(al+a3+"'+anfl)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 36 /64

Evaluation at 1
Fast Furrier Transform: Evaluation at +1

F(X) = ap+ ax + ax> 4 asx> + -+ + ap_ox" 2 4 ap_1x" !

fl)=ay+a+a+as+---+ap2+an
f(—l):ao—a1+ag—33+~--—i-a,,_2—a,,_1

f(1)=(ao+a+-+a,2)+(a+a+-+a,1)
f(_l):(ao+a2+"'+anf2)_(al+a3+"'+anfl)

Number of operations is halved!
Data Structures & Algorithms © ANE 2026 January 17, 2026 36 /64

Roats of Unity
Fast Furrier Transform: Roots of Unity

@ The even/odd trick works because
repeatedly multiplying by —1
cycles between —1 and 1
@ It'd be convenient if we had other
values making this kind of cycle, and if 1
these cycles were longer

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 37 /64

Roats of Unity
Fast Furrier Transform: Roots of Unity

@ The even/odd trick works because
repeatedly multiplying by —1
cycles between —1 and 1

@ It'd be convenient if we had other
values making this kind of cycle, and if
these cycles were longer

@ Complex numbers give us values r
where r" =1

@ These are called roots of unity

o FFT evaluates f at 1,r,r%, ... "t

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 37 /64

Fast Furrier Transform: Odd/Even Trick

f(X) = 4o + a X —+ 32X2 + -+ a,,_lx"_l

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 38 /64

Fast Furrier Transform: Odd/Even Trick

f(X) = 4o + a X —+ 32X2 + -+ a,,_lx"_l

fo(x) = ap +apx®Hagx* + -+ ap_ox"7?

fo(x) = aix+asx>+asx® + -+ ap_1x" 1

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026

38 /64

Fast Furrier Transform: Odd/Even Trick

f(X) = 4o + a X —+ 32X2 + -+ a,,_lx"_l

fo(x) = ap +apx®Hagx* + -+ ap_ox"7?

fo(x) = apxtasx+asx® 4+ -+ ap_1x"1

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026

38 /64

Fast Furrier Transform: Odd/Even Trick

f(X) = 4o + a X —+ 32X2 + -+ a,,_lx"_l

2

fo(x) = ap +apx®Hagx* + - 4 ap_ox"”
) - 1

fo(x

fo(x) = x(a1 +asx*+asx* + -+ + a,_1x"?)

31X+a3X3+35X5 4+ -4 a,,_lx”_

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 38 /64

Fast Furrier Transform: Odd/Even Trick

f(X) = 4o + a X —+ 32X2 + -+ a,,_lx"_l

2

fo(x) = ap +apx’Hagx* + - 4 ap_ox""
) - 1

fo(x

fo(x) = x(a1 +asx’+asx + -+ a,_1x"?)

31X+a3X3+35X5 4+ -4 a,,_lx”_

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 38 /64

Odd/Even Trick
Fast Furrier Transform: Odd/Even Trick

f(X) = ag + aix + 32X2 + 4 a,,_lx"_l

2

fu(x) = ap +apx®+agx* + -+ a, ox""
)= !

fo(x

fo(x) = x(a1 +asx®+asx* + -+ a,_1x"?)

31X+a3X3+35X5 4+ -4 a,,_lx”_

g(y) = a0 +axy +agy® + o+ an_2yn/271

g(y) = a1 +asy +asy’ + + ap_1y
f(x) = ge(x?) + xgo(x?)

n/2—1

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 38 /64

Fast Furrier Transform Divide and Conquer

Fast Furrier Transform: Divide and Conquer

F(x) = a0+ aix + ax” + ...+ ap1x" " = go(x*) + xgo(x?)
ge(y) = a0+ a2y + ay? + ...+ anoy"*!
go(y) =a; + a3y + 35)/2 +...+ anilyn/zq

@ We need to evaluate g. and g, at y = x° =

W2 0P (PR, (PR PR (R ()
Data Structures & Algorithms © ANE 2026 January 17, 2026 39 /64

Fast Furrier Transform Divide and Conquer

Fast Furrier Transform: Divide and Conquer

F(x) = a0+ aix + ax” + ...+ ap1x" " = go(x*) + xgo(x?)
ge(y) = a0+ a2y + ay? + ...+ anoy"*!
go(y) =a; + a3y + 35)/2 +...+ anilyn/zq

@ We need to evaluate g. and g, at y = x° =

2 2 22 n/2—1\2 n/2\2 n/24+1\2 n—1y2
@7 % ()% ()) () ()
2 4 n—2 n __ 2 n—2
1, re, e, ==, =1, re,..., r
Data Structures & Algorithms © ANE 2026 January 17, 2026 39 /64

Fast Furrier Transform Divide and Conquer

Fast Furrier Transform: Divide and Conquer

F(x) = a0+ aix + ax” + ...+ ap1x" " = go(x*) + xgo(x?)
ge(y) = a0+ a2y + ay? + ...+ anoy"*!
go(y) =a; + a3y + 35)/2 +...+ anilyn/zq

@ We need to evaluate g. and g, at y = x° =

(1)2’ (r)Z’ (r2)27 o (rn/271)2’ (I’n/2)2, (rn/2+1)2, e (rn71)2

? ? AR

@ To evaluate f at n roots of unity, we evaluate g. and g, at n/2 roots of unity
@ Recursion! T(n) =2T(n/2) + O(n) = O(nlog n)
Data Structures & Algorithms © ANE 2026 January 17, 2026 39 /64

Fast Furrier Transform: Inverse FFT?

@ Multiplying polynomials of degree n f.g
e Distributing would take O(n?) coeff

o FFT takes O(nlogn)

—>
FFT

f.g
points

O(nlogn) | Pointwise

S o Distributin L
e Pointwise multiplication takes O(n) 2g multiplication
O(n)
O(n)
h h
— .
coeff | pp | points
O(nlogn)
Data Structures & Algorithms © ANE 2026 January 17, 2026 40 /64

Inverse FFT?
Fast Furrier Transform: Inverse FFT?

@ Multiplying polynomials of degree n f.e | f.&

e Distributing would take O(n?) coeff | ppT | points
o FFT takes O(nlogn)

O(nlogn) | Pointwise

e Pointwise multiplication takes O(n) DISt”%E;% multiplication
e FFT is (approximately) its own inverse O(n)
e No proof here: not a math panel h h
o IFFT takes O(nlogn) I
coeff oints
e The Anti-Furry Transform is just a IFFT [P
Furry Transform in disguise :3 O(nlog n)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 40/ 64

E621 Programming Language Tags

@ How many posts
exist for different

programming

languages?
o

Category
Order

Has wiki?
Has artist?

Hide empty? v

 Search

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026

January 17, 2026

41/64

E621 Programming Language Tags

Count
edit | history
] HOW many pOStS edit | history
exist for different edit | hstory

edit | history

programming
languages?
R

Category

edit | history

edit | history

edit | history

edit | history
Order edit | history
Has wi

edit | history

Has artist?

Hide empty?

edit | history

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 41/64

Animal Computing Mascots

Animal Computing Mascots

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 42 /64

LGN EINECT TG R EECI Il Trans Rights!

Animal Computing Mascots: Trans Rights!

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 43 /64

Animal Computing Mascots: Unofficial Mascot of C+-+

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 44 / 64

Powershell..
Animal Computing Mascots: Powershell...

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 45 /64

wst
Animal Computing Mascots: WSL

From: Richard Stallman
Subject: WSL

Date: Mon, 23 Jan 2023 22:50:01 -0500
[[[To any NSA and FBI agents reading my email: please consider 111
[[[whether defending the US Constitution against all enemies, 111
[[[foreign or domestic, requires you to follow Snowden’s example.]]]

How about pronouncing (and writing) "WSL" as "weasel"?

Dr Richard Stallman (https://stallman.org)

Chief GNUisance of the GNU Project (https://gnu.org)
Founder, Free Software Foundation (https://fsf.org)
Internet Hall-of-Famer (https://internethalloffame.org)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 46 / 64

O'Reilly Book Covers

Support for Every Text Editing Task Reguletr Expressions
Jor Perd, Ruby, PHE,
Python, €, fava, and NET

Regular
Express

Pocket Reference

UNIX Penver Tools

. - ’g‘ \ s
V1 and Vim
Editors

Pocket Reference

O'REILLY* Arnold Robbins O'REILLY ke Dorgberty & Arnoled Robbties

Tony Stutbblebine

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 47 /64

O'RLY Book Covers

——
Learn to Accept That the Other Engincers Are Dogs

Being Friends
with Gay Furries
For Software Developers

ORLY’ Vincent Wolfe

Bunsen Bitti, Unsigned Long

Introducing the uncanny valley into your codebase

Beautiful Typese

with LaTeX

Overfull \hbox (9.895pt too wide)

Coding ‘
With GPT

7th Edition
ORLY’ @DanielW_Kiwi

Data Structures & Algorithms @ ANE 2026 January 17, 2026 48 /64

Protogen Disconnect

https://youtu.be/t9QugQkASdQ

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 49 /64

https://youtu.be/t9QugQkASdQ

Twisted Pair/Coaxial Cable®

@ Electric current makes magnetic fields

@ Excessive magnetic fields causes noise
and interference

@ ldea: place reverse current close to
forward current to have fields cancel

@ Twisted pairs!

5Disclaimer: | am not an Electrical Engineer

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 50 /64

Twisted Pair/Coaxial Cable®

@ Electric current makes magnetic fields

@ Excessive magnetic fields causes noise

and interference plastic jacket

dielectric insulator
@ ldea: place reverse current close to

forward current to have fields cancel

@ Twisted pairs!

metallic shield
centre core

@ To make the fields align and cancel
even more, the two conductors can be
made to share the same axis

@ Coaxial cable!

5Disclaimer: | am not an Electrical Engineer

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 50 /64

Twisted Pair/Coaxial Cable®

@ Electric current makes magnetic fields

@ Excessive magnetic fields causes noise
and interference

@ ldea: place reverse current close to
forward current to have fields cancel

@ Twisted pairs!

@ To make the fields align and cancel
even more, the two conductors can be
made to share the same axis

@ Coaxial cable!

5Disclaimer: | am not an Electrical Engineer

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 50 /64

Twisted Pair/Coaxial Cable®

@ Electric current makes magnetic fields

@ Excessive magnetic fields causes noise
and interference

@ ldea: place reverse current close to
forward current to have fields cancel

@ Twisted pairs!

@ To make the fields align and cancel
even more, the two conductors can be
made to share the same axis

@ Coaxial cable!

5Disclaimer: | am not an Electrical Engineer

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 50 /64

Morse Code

@ ol
e @ m
@ @ ® @ @ @ @ @
@@@Q@Q@@Q@@@@@QQ

@@O@OOO@OO@OOOO@@@@OOOOO@OOOOO@@

Data Structures & Algorithms @ ANE 2026 January 17, 2026

51/64

Morse Code

"“
.t ~
. ~

<:>,. \K::P

& © ® @ @ @ @ @
HYOLOLEIRRQODQ)

@@O@OOO@O@@@OOO@@@@@O@OO@@O@OO@@

<
~
~
~
~
) @
~
- N
~
: - S :

tures & Algorithms @ ANE 2026

Letter | Frequency

rOXITunzZ2—0X>X»—-m

12.7%

9.1%
8.2%
7.5%
7.0%
6.7%
6.3%
6.1%
6.0%
4.3%
4.0%

January 17, 2026

51/64

Morse Code

"“
.t ~
. ~

<::>,. \(::y

5 0 ® @ @ @ @ @
DOOOOLOEIORQODQ ()

@@O@OOO@O@@@OOO@@@@@O@OO@@O@OO@@

<
~
~
~
~
) @
<
~
- N
~
: - S :

tures & Algorithms @ ANE 2026

Letter | Frequency

rOXITunzZ2—0X>X»—-m

12.7%

9.1%
8.2%
7.5%
7.0%
6.7%
6.3%
6.1%
6.0%
4.3%
4.0%

January 17, 2026

51/64

Braille

Braille

Atoga Unified English Braille Chart

‘ALPHABET AND NUMBERS FURGTUATION SIGNS OF OPERATION | ALPHABETIC WORDSIGNS _ STRONG GROUPSIGNS | INTALLETTER | FINALLETER ‘SHORTFORM WORDS
ALPHAGET AND MUMBERS PUNCTUATION A Cipanson: | ATHETCMOTSGS STOMCCTOPSAE | folicTow | ERolrsiens SHORTFORM WORDS
comm — N . W bew her benar
i < v ound b
pered 43 minus 4 de B ever i imself
aposrophe N i mmedie
) 45 mulnplicaton x e e 0 fuher P
T fom - o
. 4G muliplcaiondot +| g g here s Eo e
£ dvision + b e now e
G5 tongdash — b - ount o
*E peerthan > 1 0 e
ecumaonnare 1| £ € K noviedge g
yphen s < T e 8" motter e iy
" . m more « name borgr
question mark ¢ B ot s
semicolon cuRRENCY AND cople W
. MEASUREMENT Do pact P parene
clipsis ar e peive peeevin
e forvard st 1 ¢ T : e e
i backwad slash | dollr » U - . Lo
o € Lowen some e
openingouer | oo GROVPSIENS B el
apmbl § 0 Quonon mark Brthpound €| v very time W
; w ioa ander e o
P . doingouar et o unde &
& Quottionmark * inches oo work bt
 pusge . vy i P
apening oner [« 3 young .
i Gradel trminsor hotutn mark * | SPECIALSYMBOLS i o
Typelo percent % TRONG CONTRACTIONS W oy
) dosingionee) TEONG coNTRACTONS . - [
T alicsymbol quotation mark * [£33 degree © o) ER
i word Do o o i L e v
o E— S trogh <
ialic pusage 1 haig o ; . A~V R el
ialicterminator | GROUPING PUNGTUAIION |14 38 i 5o vhere pod g o
boldsymbol R opemend ! N
bold word it dosingrownd * " "o used i 0Dy
e s pueenthets) STRONG WORDSIGNS LOWER WORDSIGNS vord
pesese openingsquare | < these 1 obe ation oy
bold terminator et 1 o - n
osing square shll enough those 4 o o
bracket) s e whose . “
underlne word apening curly B
underline passage bracket { T o e EL G adock
- sy S ou EE™ cannot
13 e opcning gl TECHNOLOGIES
e — osng angle pir
e ; roga
seriptp -
S sripttermintor . Vit our nline siore 5t WWW.AFOZa.cOm

Bunsen Bitti, Unsigned Lon Data Structures & Algorithms @ ANE 2026 January 17, 2026 52 /64

Braille

ALPHABET AND NUMBERS
123 45678 90
a b cde f g h i |j

k | mn o p q r s t

L L o0 LN o - LN] LN] L] . .
.. e .. -® -0 - e o0 o - oo
e - L] ° - ° - o - o - e L] e - ° -
u v x y z w
L] L] o0 LN L] .

L] - L] L] o0
o0 LN] LN} o0 LN] B J

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 53 /64

Braille

Braille

ALPHABET AND NUMBERS

STRONG GROUPSIGNS

123 45678 90
a b cde f g h i |j

k | mn o p q r s t

e o o0 o0 o o0 o0 o ‘e e
.- e+ - ‘@ -e e- ee o0 o - oo
o o e o o o o o - o
u v x y z w
. . oo o0 o)

° - - o ° L]
o0 o0 o0 o0 oo)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026

ch
sh
th
wh
ou

st

gh
ed
er
ow

ar

ing

January 17, 2026

53 /64

Braille

Braille

ALPHABET AND NUMBERS

STRONG GROUPSIGNS

123 45678 90
a b cde f g h i |j

k | mn o p gq r s t

e o o0 o0 o o0 o0 o ‘e e
- e e e e- ee o0 o - oo
e o o e o o o o - o
u v x y z w
. . oo o0 o)

° - - o ° L]
o0 o0 o0 o0 oo)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026

ch
sh
th
wh
ou

st

gh
ed

er “owo" is
ow

ar

ing

January 17, 2026

53 /64

Huffman Coding

@ More frequent characters get
shorter encodings

@ Used in .zip files and other
compression algorithms

@ Won't go over details due to time

54 /64

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026

3SUM-Hardness

3SUM: given n numbers, can you find 3 that sum to 07
Solvable in O(n?) by hashing
Assumed to not have a (significantly) faster solution

Some problems are at least as hard to solve as 3SUM, and are called 3SUM-hard

e Given lines in a plane, do any 3 intersect at a point?
e Given triangles in a plane, does their union have a hole?

Proof says, for any 3SUM instance, do some fast algorithm to transform into a
3SUM-hard instance whose solution matches the orignal problem

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 55 /64

3SUM-Hardness

@ 3SUM: given n numbers, can you find 3 that sum to 07
Solvable in O(n?) by hashing
@ Assumed to not have a (significantly) faster solution

@ Some problems are at least as hard to solve as 3SUM, and are called 3SUM-hard

e Given lines in a plane, do any 3 intersect at a point?
e Given triangles in a plane, does their union have a hole?

Proof says, for any 3SUM instance, do some fast algorithm to transform into a
3SUM-hard instance whose solution matches the orignal problem

o Note: If numbers are integers in [—N, N], solvable in O(n + Nlog N) via FFT

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 55 /64

How Often Should You Beat Your Kids?
VOL. 63, NO. 2, APRIL 1990 89

How Often Should You Beat Your Kids?

DON ZAGIER
University of Maryland

College Park, MD 20742

A result is proved which shows, roughly speaking, that one should beat one’s
kids every day except Sunday.

This note is a follow-up to the note “How to Beat Your Kids at Their Own Game,”
by K. Levasseur [1], in which the author proposes the following game to be played
against one’s two-year-old children: Starting with a deck consisting of n red cards and
n black cards (in typical applications, n = 26), the cards are turned up one at a time,
each player at each stage predicting the color of the card which is about to appear.
The kid is supposed to guess “Red” or “Black” randomly with equal probability (this
solves the problem of constructing a perfect random number generator), while you
play what is obviously the optimal strategy—guessing randomly (or, if you prefer,

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 56 / 64

How Often Should You Beat Your Kids?

Multiplying this by the probability that m(p) = m as computed above, we find finally

)
+ Z ﬂe‘ 2/4n(_]‘_j(;m/2‘/ﬁe~u2du)

Vo

DO

probability of winning =

DO

® x 2 1 x/2/n 2
x“/4n u
+ ‘/(‘) e (j(; e du) dx

1 1 ® 2 x/2 _ 2
= — = x°/4 u
2+2’”f09ce (0 e du)dx
1 1 ®© 2
== 4+ — —u —x/4d d
A (/)
1 1 X2 2
—§+ﬁj(;e (2)du
1,1
2 2‘/5’

as claimed. This is very nearly 6/7, so the result of our paper can be conveniently
implemented by beating one’s kids on weekdays and Saturdays, but never on Sunday.

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 57 /64

The Cycle Finding Problem
Tortoise and Hare: The Cycle Finding Problem

@ Take some function f : [n] — [n],
and some starting value x.

o Notation: [n] is the numbers
{1,...,n}, and f is a function that
takes a number from [n], and
outputs a number in [n]

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026

January 17, 2026

58 /64

The Cycle Finding Problem
Tortoise and Hare: The Cycle Finding Problem

@ Take some function f : [n] = [n], f(x) «—— x
and some starting value x.
o Notation: [n] is the numbers /
{1,...,n}, and f is a function that f(f(x)) i1
takes a number from [n], and F(x)

outputs a number in [n] v / \
)

@ By pidgeonhole principle, the sequence £5(x F1=2(x)
x, f(x), f(f(x)),...,f'(x),... v
will repeat \

fs—&-l(X).v

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 58 /64

The Cycle Finding Problem
Tortoise and Hare: The Cycle Finding Problem

@ Take some function f : [n] = [n], f(x) «—— x
and some starting value x.
o Notation: [n] is the numbers /
{1,...,n}, and f is a function that f(f(x)) i1
takes a number from [n], and F (%)

outputs a number in [n] v / \
)

e By pidgeonhole principle, the sequence Fo(x F-2(x)
x, f(x), f(f(x)),...,f'(x),... v
will repeat \ =

e Find s, t such that f°(x) = f**(x) F5+1(x)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 58 /64

Floyd's Algorithm
Tortoise and Hare: Floyd's Algorithm

@ Algorithm description
e Tortoise and hare start with

Xt := X and xp = X. /

o When tortoise computes x; := f(xt), F(F(x))

hare computes xj, := f(f(x)). f=1(x)
\ / \
f=(x) f=2(x)
. v
F1(x)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 59 /64

Floyd's Algorithm
Tortoise and Hare: Floyd's Algorithm

@ Algorithm description
e Tortoise and hare start with
X¢ := x and x, := x. /
o When tortoise computes x; := f(x),
hare computes xj, := f(f(xp)). F(f(x))

@ Algorithm analysis y / \
\

e Eventually both tortoise and hare
will enter the cycle

o When both are in the cycle, the hare
will catch up to the tortoise

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 59 /64

Floyd's Algorithm
Tortoise and Hare: Floyd's Algorithm

@ Algorithm description
o Tortoise and hare start with
X¢ := x and x, := x. /
o When tortoise computes x; := f(x),
hare computes xj, := f(f(xp)). F(f(x))
@ Algorithm analysis / V\
e Eventually both tortoise and hare M
will enter the cycle
o When both are in the cycle, the hare \
will catch up to the tortoise

@ Used in Pollard’s rho algorithm

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 59 /64

Polard’s Kangaroo
Tortoise and Hare: Pollard’s Kangaroo

How Long Does it Take to Catch a Wild Kangaroo?

Ravi Montenegro * Prasad Tetali

November 7, 2010

Abstract

We develop probabilistic tools for upper and lower bounding the expected time until two in-
dependent random walks on Z intersect each other. This leads to the first sharp analysis of
a non-trivial Birthday attack, proving that Pollard’s Kangaroo method solves the discrete log-
arithm problem ¢g” = h on a cyclic group in expected time (2 + 0(1))v/b — a for an average
z € [a,b]. Our methods also resolve a conjecture of Pollard’s, by showing that the same bound
holds when step sizes are generalized from powers of 2 to powers of any fixed n.

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 60 /64

Primal Duel

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 61 /64

Primal Duel

@ Optimization problems

e Find minimum/maximum of objective function
e Variables must satisfy constraints

@ Initial formulation called the “primal”

@ There is a transformation that moves primal constraints into objective function
terms, and moves primal objective function terms into constraints

e The resulting formulation is called the “dual”
@ Some optimization algorithms switch between primal and dual formulations
e Primal-dual methods

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 62 /64

Dominators

@ Analysis of control-flow graphs

@ Node A dominates B if any path from the entry
node to B must pass through A.

@ Any node dominates itself; to exclude this case,
use strict dominance.
@ Strict dominance cannot have a cycle
e Suppose A dominates B
o Take a path to B with no cycles
e Shorten this path so it ends at A
e This is a path from the entry node to A that
doesn’t pass through B.

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 63 /64

Dominators

@ Analysis of control-flow graphs

@ Node A dominates B if any path from the entry
node to B must pass through A.

@ Any node dominates itself; to exclude this case,
use strict dominance.
@ Strict dominance cannot have a cycle

e Suppose A dominates B

o Take a path to B with no cycles

e Shorten this path so it ends at A

e This is a path from the entry node to A that
doesn’t pass through B.

@ The strict dominance graph can be top-sorted

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026

January 17, 2026

63 /64

EOM

Data Structures & Algorithms @ ANE 2026

The Dominance Frontier

Bunsen Bitti, Unsigned Long

January 17, 2026

OFfp0

[x]

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ ANE 2026 January 17, 2026 64 /64

	Overview
	How I Found the Fandom (Unsigned Long)
	How I Found the Fandom (Bunsen)
	Fursuits are Planar Graphs
	Alphabet Trees
	Macro-Micro Tree Decomposition
	Instruction Set Architecture
	x86 ISA
	x86 ISA
	x86 ISA
	x86 ISA
	x86 ISA
	x86 ISA
	KNOTD
	Fast Furrier Transform
	Polynomials
	Multiplication
	Polynomial Interpolation/Evaluation
	Evaluation at ±1
	Roots of Unity
	Odd/Even Trick
	Divide and Conquer
	Inverse FFT?

	E621 Programming Language Tags
	Animal Computing Mascots
	Trans Rights!
	Unofficial Mascot of C++
	Powershell...
	WSL

	O'Reilly Book Covers
	O'RLY Book Covers
	Protogen Disconnect
	Twisted Pair/Coaxial Cable
	Morse Code
	Braille
	Huffman Coding
	3SUM-Hardness
	How Often Should You Beat Your Kids?
	Tortoise and Hare
	The Cycle Finding Problem
	Floyd's Algorithm
	Pollard's Kangaroo

	Primal Duel
	Dominators
	EOM

