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● This is not a rigorous lecture
○ We’re trying to have fun here :3

● Ask questions!
○ I’ve been coding for most of my life

○ If you don’t understand things, 
that’s on me

○ I’m out of touch with reality
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About Me

● Found furries through con videos

● Found some eastern dragons with 
the word “Long” in their name

● Thought about “long” for too long

● Realized it’s in my code

● Pun was too good to do nothing 
with, so I made a fursona



Measuring Information

● Bit: stores 0 or 1

● Byte: 8 bits

● Nibble: 4 bits = half a byte
○ Not commonly used

https://www.corgibeansshop.com/



Order Notation

Oops I forgot to go over this in previous iterations of this panel
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● Formally ignore constant factors
○     ,                   ,                          are all

● Only care about long-term growth
○ Eventually,

● Some people ignore bigger factors
○
○ The more you ignore, the more 

theoretical your analysis is

Order Notation

https://en.wikipedia.org/wiki/Big_O_notation



Planar Graphs

Thank you Euler :3
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Planar Graph Complexity

● Vertices V, often labeled 1, 2, …, n

● Edges are between two vertices
○ Worst case m = O(n^2) edges

● Planar graphs can be drawn 
without crossing edges

● Planar graphs have m=O(n)

● Fursuits are planar graphs
○ Vertices are fabric patches

○ Edges are seams

○ Number of seams is O(n)
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Fast Fourier Transform (FFT)

I have butterflies in my stomach >w<
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Polynomials

term degreecoefficient

Evaluating at a point takes O(n)



● For     points, there is a unique 
polynomial with degree less than 
that passes through all the points

● Evaluating the polynomial to find 
these points typically takes O(n^2), 
but if we choose points cleverly, we 
can do better

Polynomial Interpolation/Evaluation
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Evaluating at x=-1 and x=1

Reduces number of operations by a half!
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More x values to evaluate at

● The even/odd trick works because 
repeatedly multiplying by
cycles between         and

● It’d be convenient if we had other 
values making this kind of cycle, 
and if these cycles were longer

● Complex numbers give us values  
where 

● These are called roots of unity

● FFT evaluates f at 
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Inverse Fast Fourier Transform?

● Turns out FFT is its own inverse

● Multiplying polynomials of degree

○ Distributing would take

○ FFT takes

○ Pointwise multiplication takes 

○ (Inverse) FFT takes 

● I think FFT being its own inverse is 
related to why anti-furries 
eventually become furries



Morse Code, Braille, and 
Connections to Coding Theory
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Morse Code
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https://commons.wikimedia.org/wiki/File:Morse-code-tree.svg https://en.wikipedia.org/wiki/Letter_frequency



Morse Code

More frequently used characters are given shorter encodings

https://commons.wikimedia.org/wiki/File:Morse-code-tree.svg https://en.wikipedia.org/wiki/Letter_frequency
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Braille

https://www.teachingvisuallyimpaired.com/uploads/1/4/1/2/14122361/ueb_braille_chart.pdf

“owo” is ⠪⠕



Huffman Coding

● More frequent characters get 
shorter encodings

● Used in .zip files and other 
compression algorithms

● Won’t go over details due to time



Macro-Micro Tree Decomposition

Four russians removing logs in a tree
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Macro-Micro Tree Decomposition
● Trees

○ Begin with root node

○ Nodes can have child nodes

○ Repeat

○ Nodes without children are leaves

● When limited to n nodes, there are 
exponentially many distinct trees.

● Node is micro if has less than 
O(log(n)) descendants (else macro)

● Node is macro leaf if it is macro and 
all its children are micro

1

2 3 4

5 6 7

8 9 10 11 12

13 14

At most O(n/log(n)) macro leaves

Only O(n^(1/c)) distinct microtrees



Animal Computing Mascots

The true meaning of ACM



Animal Computing Mascots



Trans Rights!

https://xenia-linux-site.glitch.me/



Powershell



WSL

https://github.com/codetent/weasel



O’Reilly Book Covers



O’RLY Book Covers

https://orlybooks.com/



Dragon Books





Primal Dual Methods
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Lagrange Multipliers

● Suppose we’re minimizing
subject to

● Constraint is annoying

● Introduce multiplier “   ”, get

● What happens if we try to 
maximize λg(x)?
○ When g(x)=0, maximum is 0

○ Otherwise, maximum is infinite

● There’s more cool math here, but 
we’ll skip it for time
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Fuzzing

bottom text



American Fuzzy Lop



American Fuzzy Lop

● Fuzzer: program that automatically 
searches for buggy input

● Initial idea: purely random input

● Add rules/strategies/heuristics to 
increase chance of buggy input

https://aflplus.plus/
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