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Overview

e Thisisacomedic/informative look
at overlaps between furry and
computer science

o  There will be puns *w*

e Thisisnotarigorous lecture
o We'retrying to have fun here :3

e Ask questions!
o I've been coding for most of my life

o If youdon't understand things,
that’s on me

o I'mout of touch with reality
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About Me

Found furries through con videos

silvergatomon

@silvergatomon - 3.2K subscribers - 1K videos
More about this channel ...more

ko-fi.com/silvergatomon and 2 more links

£\ subscribed v




About Me

e Found furries through con videos

e Foundsome eastern dragons with
the word “Long” in their name

https://www.furaffinity.net/user/tienlong/
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About Me

e Found furries through con videos

e Found some eastern dragons with
the word “Long” in their name

e Thought about “long” for too long

e Realizedit'sin my code

short
short int
signed short

signed short int

unsigned short
unsigned short int
int

signed

signed int

unsigned

unsigned int

long
long int
signed long

signed long int

unsigned long

unsigned long int

Short signed integer type. Capable of containing at
least the [-32 767, +32 767] range.[3]2]

Short unsigned integer type. Contains at least the
[0, 65 535] range. !

Basic signed integer type. Capable of containing at
least the [-32 767. +32 767] range.[51[2]

Basic unsigned integer type. Contains at least the
[0. 65 535] range.[°]

Long signed integer type. Capable of containing at
least the [2 147 483 647, +2 147 483 647] range. 12!

Long unsigned integer type. Capable of containing at
least the [0, 4 294 967 295] range. ]




About Me

e Found furries through con videos

e Foundsome eastern dragons with
the word “Long” in their name

e Thought about “long” for too long
e Realizedit'sin my code

e Punwas too good to do nothing
with, so | made a fursona




Measuring Information

e Bit:storesOor1
e Byte: 8 bits
e Nibble: 4 bits = half a byte

o Not commonly used

https://www.corgibeansshop.com/



Order Notation

Oops | forgot to go over this in previous iterations of this panel
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Planar Graphs

Thank you Euler :3
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Planar Graph Complexity

e \VerticesV, oftenlabeled 1, 2, ...,n

e Edges are between two vertices
o  Worst case m = O(n”2) edges

e Planar graphs can be drawn
without crossing edges

e Planar graphs have m=0(n)

e Fursuits are planar graphs
o Vertices are fabric patches
o Edgesareseams

o Number of seams is O(n)



Fast Fourier Transform (FFT)

| have butterflies in my stomach >w<



Polynomials

<3

f(x):3+2x—4x2+x3

f(0)

f(1)

f(2)
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Polynomials

f(2)

coefficient term degree
1 /
N f(x)=3+24 2L x
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Polynomials

coefficient term degree
1 /
N f(x)=3+24- 2L 58 | 4
£(0)
=3
f(1)
=
7(2) I |
\ — I

Evaluating at a point takes O(n) [2




Polynomial Interpolation/Evaluation

e For npoints, thereis a unique 4
polynomial with degree less than n
that passes through all the points

e Evaluating the polynomial to find

these points typically takes O(n”2),
but if we choose points cleverly, we
can do better
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f)=ar+ar+- - +ap2+a,_;
f(=l)=ay—ar+ - +ap2—a,1
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Evaluating at x=-1 and x=1

f(ﬂ?) = Qg + A1T + a2x2 I an_lxn—l

f)=ap+a1+ -+ a,_ o+ a1
f(=)=ap—ar+- - +ay_2— ap_1

f(l)=(ap+az+ - +ap2)+(ar+az3+ - +a,1)
f(=1)=(ap+ax+---+an2) — (@1 +as+---+az_1)

Reduces number of operations by a half!
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More x values to evaluate at

e Theeven/odd trick works because
repeatedly multiplying by —1
cycles between —1and 1

e |t'd be convenient if we had other
values making this kind of cycle,

and if these cycles were longer —1

e Complex numbers give us values r
where " = 1

e These are called roots of unity

e FFTevaluatesfat 1,7, 7%, ... "}
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Applying even/odd trick

f(ﬂ?) = Qg + A1T + QQ;L‘Q 4 .o 4 an_lxn—l

2

fe<37> =ay T+ az:li?‘ + a4x4 et @y _ox™
f0<513> = 1T CLgZL‘S - a5$5 T an_1il’n_1
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Applying even/odd trick

f(ﬂ?) = Qg + A1T + a2x2 4 ..o 4 an_lxn—l

4

2

f€<ZIZ> = ap T CLQIE—F adril+ -+ a,_ox™
fo(aj) = mTr -+ a3x3 == CL5ZC5 AL oo It an—lfn_l
f0($> — x(al + as : S a5gp4 Lot an—lﬂjn_Q)




Applying even/odd trick

f(QZ) = Qg + A1T + LLQZQ I an_lxn—l

0 + CLQIE—F CL4£L’4 4 ... 4 an_QZEn_
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S 3 5 .
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Applying even/odd trick

f(z) =ag+ a1z + asx® + -+ + ap_12"

fe(x) = ag
folz) =a
folz) = x(aq
9e(y)
9o(y)
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f(z) = ge(z?) + zgo(z”)



Divide and Conquer

f(z)
ge@) =ap + ay —+ a4y2 +... +a,_oy
Gy)=a1 +azyy +asy’+... + an—1y”/2_1

e Weneedtoevaluategat

<1>27 (T)Q, (T2)2,..., (Tn/2—1)27 (Tn/Z)Q’ (,r,n/2+1)27.”7 (Tn—l)Q

ag + o1z +az’+ ... +ap 1TV = go(3?) + 2go(x?)
n/2—1



Divide and Conquer
fz)

ge(y) =ag + asy + sy’ + . ..
9Gly) = a1 + asy +a5y2+...

e Weneedtoevaluategat

(W2, (P, (Do, (2702, (22, (2,

=
1, 2t r'7, r't =1, re,..., T

9 ¢ o oy

2
ap + a1 x +axxr” + ...

+a, 1" = ge(x2) -+ ng(a:Q)

T an—Qyn/Q_l

4 an_lyn/2—1



Divide and Conquer
fz)

ge(y) =ag + asy + sy’ + . ..
9Gly) = a1 + asy +a5y2+...

e Weneedtoevaluategat

O () L () P (R

. T, T T

2
ap + a1 x +axxr” + ...

(7471/2)27 (Tn/2—|—1)2’ -
r

+a, 1" = ge(xQ) -+ ng(a:Q)

T an—Qyn/Q_l

4 an_lyn/2—1

f =1l rt .., e

e Toevaluate f at n roots of unity, we evaluate g.and g, at n/2 roots of unity



Divide and Conquer
fz)

ge(y) =ag + asy + sy’ + . ..
9Gly) = a1 + asy +a5y2+...

e Weneedtoevaluategat

O () L () P (R

. T, T r

2
ap +aix +ax” + ...

+a, 1" = ge(az2) + ng(:Cz)

4 an_zyn/Q—l
4 an_lyn/Z—l
(7,71/2)27 (T,n/2+1)2’ L (Tn_1)2
r' =1 U L

)

e Toevaluate f at n roots of unity, we evaluate g.and g, at n/2 roots of unity
e Recursion! T'(n)=2T(n/2)+n = O(nlogn)



Inverse Fast Fourier Transform?

e TurnsoutFFTisits own inverse



Inverse Fast Fourier Transform?

e Turnsout FFT isits own inverse

e Multiplying polynomials of degree n

(@)

(@)

(@)

(@)

Distributing would take O(n?)

FFT takes O(n logn)

Pointwise multiplication takes O(n)
(Inverse) FFT takes O(n logn)



Inverse Fast Fourier Transform?

e Turnsout FFT isits own inverse

e Multiplying polynomials of degree n

Distributing would take O(n?)

FFT takes O(n logn)

Pointwise multiplication takes O(n)
(Inverse) FFT takes O(n logn)

(@)

O

(@)

(@)

e | think FFT beingits own inverse is
related to why anti-furries
eventually become furries



Morse Code, Braille, and
Connections to Coding Theory



Morse Code
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Morse Code

D ot Dash Relative frequency |n fhe
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Morse Code
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More frequently used characters are given shorter encodings
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Unified English Braille Chart
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Huffman Coding

e More frequent characters get

shorter encodings
e Usedin.zip files and other

compression algorithms
e Won't go over details due to time (8) (8) (8)

(eld) @ [a]9 @ @) G) (17
2 @ (12 () (12) @ () [sT2) @) [£]3
[o'l1] [pT1




Macro-Micro Tree Decomposition

Four russians removing logs in a tree
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Macro-Micro Tree Decomposition

e Trees
o Begin with root node
o Nodes can have child nodes
o Repeat
o Nodes without children are leaves

e When limited to n nodes, there are e
exponentially many distinct trees.

e Nodeis microif has less than
O(log(n)) descendants (else macro)

e Nodeis if it is macro and
all its children are micro

At most O(n/log(n)) macro leaves




Macro-Micro Tree Decomposition

® Trees

(@)

(@)

(@)

(@)

Begin with root node

Nodes can have child nodes
Repeat

Nodes without children are leaves

e When limited to n nodes, there are
exponentially many distinct trees.

e Nodeis microif has less than
O(log(n)) descendants (else macro)

e Nodeis if it is macro and
all its children are micro

At most O(n/log(n)) macro leaves

Only O(n”(1/c)) distinct microtrees




Animal Computing Mascots

The true meaning of ACM



Animal Computing Mascots




Trans Rights!

https://xenia-linux-site.glitch.me/



Powershell




From: Richard Stallman
Subject: WSL
Date: Mon. 23 Jan 2023 22:50:01 -0500

[[[ To any NSA and FBI agents reading my email: please consider 111
[[[ whether defending the US Constitution against all enemies, 111
(L 11]

[ foreign or domestic, requires you to follow Snowden's example.

How about pronouncing (and writing) "WSL" as "weasel"?

Dr Richard Stallman (https://stallman.crg)

Chief GNUisance of the GNU Project (https://gnu.org)
Founder, Free Software Foundation (https://fsf.org)
Internet Hall-of-Famer (https://internethalloffame.org




O'Reilly Book Covers

Support for Every Text Editing Task

V1 and Vm
Editors

Pocket Reference

O'REILLY"

Arnold Robbins

sed & ak

O'REILLY

Reguldar Expressions
for Perl, Ruby, PHP,
Python, € Java, and NET

Expressmn
Pocket Reference Qw _.




O'RLY Book Covers

Feigning knowledge of a word youve heard a few times Learn to Accept That the Other Engincers Are Dogs Solutions that might fix the problem without breaking anything

Essential %

Hoping This

Being Friends
with Gay Furries

About Stuff For Software Developers

Works

O RLY? @ThePracticalDev (@] RLY'7 Vincent Wolfe O RLY? @7ThePracticalDev

https://orlybooks.com/



Dragon Books

Principles of Compiler Design

~=mme. (AN,

Compilers Compilers

Principles, Techniques,
and Tools

Principles, Techniques, & Tools

w Second Edition
\ 3§
' ¢

A y i ) _— “Alfred V. Aho

v L " Alfred V. Aho 5 Monica S. Lam

; \ 4/ ) | Ravi Sethi S ,ﬂb} \ Ravi Sethi

Alfred V. Aho s £ 3 \ Jeffrey D. Ullman
Jettrey D. Ultmang/sl ' o35 Jeffrey D. Ullman







Primal Dual Methods

| pleX
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Lagrange Multipliers

e Suppose we're minimizing f(x)
subjectto g(z) = 0

e Constraintis annoying
e Introduce multiplier “\”, get A\g(x)

e What happens if we try to
maximize Ag(x)?
o When g(x)=0, maximum is O
o  Otherwise, maximum is infinite

e There's more cool math here, but
we'll skip it for time
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Duality in Linear Programming

min c'x
Ax<b

min c'zx
0<b—Ax
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Duality in Linear Programming

min c'x

Ax<b

min c'zx max bT \
0<b—Ax A<0,(c—ATA)=0

min max(c'x + AT(b — Az)) maxmin(b"™\ + 2T(c — ATA))
r  A<0 A<0  x

min max(c'x + ATb — ATAx) maxmin(b™ A + xTc — xTATA)
r  A<0 A<0



Duality in Linear Programming

min c'zx max bT\
Ax<b A<0,AT ) \=c
min c'zx max bT \
0<b—Ax A<0,(c—ATA)=0

min max(c'x + AT(b — Az)) maxmin(b"™\ + 2T(c — ATA))
r  A<0 A<0  x

min max(c'x + ATb — ATAx) maxmin(b™ A + xTc — xTATA)
r  A<0 A<0



Fuzzing

bottom text



American Fuzzy Lop




American Fuzzy Lop

e Fuzzer: program that automatically
searches for buggy input

e Initial idea: purely random input

e Addrules/strategies/heuristics to
increase chance of buggy input

american fuzzy lop ++2.65d (libpng_harness)
cess timing

0 days, 0 hrs,
0 days, 0 hrs,

none seen yet
none seen yet

261*1 (37.1%)
0 (0.00%)

splice 14
31/32 (96.88%)
2.55M

rategy

n/a,
n/a,
n/a,
n/a,

n/a

61.2k/sec

elds
n/a, n/a
n/a, n/a
n/a, n/a
n/a, n/a
n/a, n/a

0 min, 43 sec
0 min, 1 sec

s B
506/1.05M, 193/1.44M

e/e,

0/0

19.25%/53.2k, n/a

[explore]
overall resul

5.78% / 13.98%

3.30 bits/tuple

114 (16.22%)
167 (23.76%)
0 (0 unique)
0 (0 unique)
path geometry

https://aflplus.plus/
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