
Data Structures and
Algorithms

By Unsigned Long

@InverseHackermann

Overview

● This is a comedic/informative look
at overlaps between furry and
computer science
○ There will be puns ^w^

Overview

● This is a comedic/informative look
at overlaps between furry and
computer science
○ There will be puns ^w^

● This is not a rigorous lecture
○ We’re trying to have fun here :3

Overview

● This is a comedic/informative look
at overlaps between furry and
computer science
○ There will be puns ^w^

● This is not a rigorous lecture
○ We’re trying to have fun here :3

● Ask questions!
○ I’ve been coding for most of my life

○ If you don’t understand things,
that’s on me

○ I’m out of touch with reality

About Me

● Found furries through con videos

About Me

● Found furries through con videos

● Found some eastern dragons with
the word “Long” in their name

https://www.furaffinity.net/user/tienlong/

About Me

● Found furries through con videos

● Found some eastern dragons with
the word “Long” in their name

● Thought about “long” for too long

lóng

龙

About Me

● Found furries through con videos

● Found some eastern dragons with
the word “Long” in their name

● Thought about “long” for too long

● Realized it’s in my code

About Me

● Found furries through con videos

● Found some eastern dragons with
the word “Long” in their name

● Thought about “long” for too long

● Realized it’s in my code

● Pun was too good to do nothing
with, so I made a fursona

Measuring Information

● Bit: stores 0 or 1

● Byte: 8 bits

● Nibble: 4 bits = half a byte
○ Not commonly used

https://www.corgibeansshop.com/

Order Notation

Oops I forgot to go over this in previous iterations of this panel

● Formally ignore constant factors
○ , , are all

Order Notation

https://en.wikipedia.org/wiki/Big_O_notation

● Formally ignore constant factors
○ , , are all

● Only care about long-term growth
○ Eventually,

Order Notation

https://en.wikipedia.org/wiki/Big_O_notation

● Formally ignore constant factors
○ , , are all

● Only care about long-term growth
○ Eventually,

● Some people ignore bigger factors
○
○ The more you ignore, the more

theoretical your analysis is

Order Notation

https://en.wikipedia.org/wiki/Big_O_notation

Planar Graphs

Thank you Euler :3

Planar Graph Complexity

● Vertices V, often labeled 1, 2, …, n
1

6 2

4

35

Planar Graph Complexity

● Vertices V, often labeled 1, 2, …, n

● Edges are between two vertices
○ Worst case m = O(n^2) edges

1

6 2

4

35

Planar Graph Complexity

● Vertices V, often labeled 1, 2, …, n

● Edges are between two vertices
○ Worst case m = O(n^2) edges

● Planar graphs can be drawn
without crossing edges

1

6 2

4

35

Planar Graph Complexity

● Vertices V, often labeled 1, 2, …, n

● Edges are between two vertices
○ Worst case m = O(n^2) edges

● Planar graphs can be drawn
without crossing edges

1

6 2

4

35

Planar Graph Complexity

● Vertices V, often labeled 1, 2, …, n

● Edges are between two vertices
○ Worst case m = O(n^2) edges

● Planar graphs can be drawn
without crossing edges

● Planar graphs have m=O(n)

1

6 2

4

35

Planar Graph Complexity

● Vertices V, often labeled 1, 2, …, n

● Edges are between two vertices
○ Worst case m = O(n^2) edges

● Planar graphs can be drawn
without crossing edges

● Planar graphs have m=O(n)

● Fursuits are planar graphs
○ Vertices are fabric patches

○ Edges are seams

○ Number of seams is O(n)

1

6 2

4

35

Fast Fourier Transform (FFT)

I have butterflies in my stomach >w<

Polynomials

Polynomials

term

Polynomials

termcoefficient

Polynomials

term degreecoefficient

Polynomials

term degreecoefficient

Evaluating at a point takes O(n)

● For points, there is a unique
polynomial with degree less than
that passes through all the points

● Evaluating the polynomial to find
these points typically takes O(n^2),
but if we choose points cleverly, we
can do better

Polynomial Interpolation/Evaluation

Evaluating at x=-1 and x=1

Evaluating at x=-1 and x=1

Evaluating at x=-1 and x=1

Evaluating at x=-1 and x=1

Reduces number of operations by a half!

More x values to evaluate at

● The even/odd trick works because
repeatedly multiplying by
cycles between and

More x values to evaluate at

● The even/odd trick works because
repeatedly multiplying by
cycles between and

● It’d be convenient if we had other
values making this kind of cycle,
and if these cycles were longer

More x values to evaluate at

● The even/odd trick works because
repeatedly multiplying by
cycles between and

● It’d be convenient if we had other
values making this kind of cycle,
and if these cycles were longer

● Complex numbers give us values
where

More x values to evaluate at

● The even/odd trick works because
repeatedly multiplying by
cycles between and

● It’d be convenient if we had other
values making this kind of cycle,
and if these cycles were longer

● Complex numbers give us values
where

● These are called roots of unity

More x values to evaluate at

● The even/odd trick works because
repeatedly multiplying by
cycles between and

● It’d be convenient if we had other
values making this kind of cycle,
and if these cycles were longer

● Complex numbers give us values
where

● These are called roots of unity

● FFT evaluates f at

Applying even/odd trick

Applying even/odd trick

Applying even/odd trick

Applying even/odd trick

Applying even/odd trick

Applying even/odd trick

Divide and Conquer

● We need to evaluate g at

● To evaluate at roots of unity, we evaluate and at roots of unity

● Recursion!

Divide and Conquer

● We need to evaluate g at

● To evaluate at roots of unity, we evaluate and at roots of unity

● Recursion!

Divide and Conquer

● We need to evaluate g at

● To evaluate at roots of unity, we evaluate and at roots of unity

● Recursion!

Divide and Conquer

● We need to evaluate g at

● To evaluate at roots of unity, we evaluate and at roots of unity

● Recursion!

Inverse Fast Fourier Transform?

● Turns out FFT is its own inverse

Inverse Fast Fourier Transform?

● Turns out FFT is its own inverse

● Multiplying polynomials of degree

○ Distributing would take

○ FFT takes

○ Pointwise multiplication takes

○ (Inverse) FFT takes

Inverse Fast Fourier Transform?

● Turns out FFT is its own inverse

● Multiplying polynomials of degree

○ Distributing would take

○ FFT takes

○ Pointwise multiplication takes

○ (Inverse) FFT takes

● I think FFT being its own inverse is
related to why anti-furries
eventually become furries

Morse Code, Braille, and
Connections to Coding Theory

-.- . .-. / --. --- -. -. .- / --.- . / -.-- --- ..- .-. / ..- .--.

⠝⠐⠑⠀⠛⠕⠝⠝⠁⠀⠛⠊⠧⠑⠀⠽⠀⠥⠏

Morse Code

https://commons.wikimedia.org/wiki/File:Morse-code-tree.svg

Morse Code

https://commons.wikimedia.org/wiki/File:Morse-code-tree.svg https://en.wikipedia.org/wiki/Letter_frequency

Morse Code

More frequently used characters are given shorter encodings

https://commons.wikimedia.org/wiki/File:Morse-code-tree.svg https://en.wikipedia.org/wiki/Letter_frequency

Braille

https://www.teachingvisuallyimpaired.com/uploads/1/4/1/2/14122361/ueb_braille_chart.pdf

Braille

https://www.teachingvisuallyimpaired.com/uploads/1/4/1/2/14122361/ueb_braille_chart.pdf

Braille

https://www.teachingvisuallyimpaired.com/uploads/1/4/1/2/14122361/ueb_braille_chart.pdf

Braille

https://www.teachingvisuallyimpaired.com/uploads/1/4/1/2/14122361/ueb_braille_chart.pdf

“owo” is ⠪⠕

Huffman Coding

● More frequent characters get
shorter encodings

● Used in .zip files and other
compression algorithms

● Won’t go over details due to time

Macro-Micro Tree Decomposition

Four russians removing logs in a tree

Macro-Micro Tree Decomposition
● Trees

○ Begin with root node

○ Nodes can have child nodes

○ Repeat

○ Nodes without children are leaves

1

Macro-Micro Tree Decomposition
● Trees

○ Begin with root node

○ Nodes can have child nodes

○ Repeat

○ Nodes without children are leaves

1

2 3 4

Macro-Micro Tree Decomposition
● Trees

○ Begin with root node

○ Nodes can have child nodes

○ Repeat

○ Nodes without children are leaves

1

2 3 4

5 6 7

Macro-Micro Tree Decomposition
● Trees

○ Begin with root node

○ Nodes can have child nodes

○ Repeat

○ Nodes without children are leaves

1

2 3 4

5 6 7

8 9 10 11 12

Macro-Micro Tree Decomposition
● Trees

○ Begin with root node

○ Nodes can have child nodes

○ Repeat

○ Nodes without children are leaves

1

2 3 4

5 6 7

8 9 10 11 12

13 14

Macro-Micro Tree Decomposition
● Trees

○ Begin with root node

○ Nodes can have child nodes

○ Repeat

○ Nodes without children are leaves

● When limited to n nodes, there are
exponentially many distinct trees.

1

2 3 4

5 6 7

8 9 10 11 12

13 14

Macro-Micro Tree Decomposition
● Trees

○ Begin with root node

○ Nodes can have child nodes

○ Repeat

○ Nodes without children are leaves

● When limited to n nodes, there are
exponentially many distinct trees.

● Node is micro if has less than
O(log(n)) descendants (else macro)

1

2 3 4

5 6 7

8 9 10 11 12

13 14

Macro-Micro Tree Decomposition
● Trees

○ Begin with root node

○ Nodes can have child nodes

○ Repeat

○ Nodes without children are leaves

● When limited to n nodes, there are
exponentially many distinct trees.

● Node is micro if has less than
O(log(n)) descendants (else macro)

● Node is macro leaf if it is macro and
all its children are micro

1

2 3 4

5 6 7

8 9 10 11 12

13 14

Macro-Micro Tree Decomposition
● Trees

○ Begin with root node

○ Nodes can have child nodes

○ Repeat

○ Nodes without children are leaves

● When limited to n nodes, there are
exponentially many distinct trees.

● Node is micro if has less than
O(log(n)) descendants (else macro)

● Node is macro leaf if it is macro and
all its children are micro

1

2 3 4

5 6 7

8 9 10 11 12

13 14

At most O(n/log(n)) macro leaves

Macro-Micro Tree Decomposition
● Trees

○ Begin with root node

○ Nodes can have child nodes

○ Repeat

○ Nodes without children are leaves

● When limited to n nodes, there are
exponentially many distinct trees.

● Node is micro if has less than
O(log(n)) descendants (else macro)

● Node is macro leaf if it is macro and
all its children are micro

1

2 3 4

5 6 7

8 9 10 11 12

13 14

At most O(n/log(n)) macro leaves

Only O(n^(1/c)) distinct microtrees

Animal Computing Mascots

The true meaning of ACM

Animal Computing Mascots

Trans Rights!

https://xenia-linux-site.glitch.me/

Powershell

WSL

https://github.com/codetent/weasel

O’Reilly Book Covers

O’RLY Book Covers

https://orlybooks.com/

Dragon Books

Primal Dual Methods

Lagrange Multipliers

● Suppose we’re minimizing
subject to

Lagrange Multipliers

● Suppose we’re minimizing
subject to

● Constraint is annoying

Lagrange Multipliers

● Suppose we’re minimizing
subject to

● Constraint is annoying

● Introduce multiplier “ ”, get

Lagrange Multipliers

● Suppose we’re minimizing
subject to

● Constraint is annoying

● Introduce multiplier “ ”, get

● What happens if we try to
maximize λg(x)?
○ When g(x)=0, maximum is 0

○ Otherwise, maximum is infinite

Lagrange Multipliers

● Suppose we’re minimizing
subject to

● Constraint is annoying

● Introduce multiplier “ ”, get

● What happens if we try to
maximize λg(x)?
○ When g(x)=0, maximum is 0

○ Otherwise, maximum is infinite

Lagrange Multipliers

● Suppose we’re minimizing
subject to

● Constraint is annoying

● Introduce multiplier “ ”, get

● What happens if we try to
maximize λg(x)?
○ When g(x)=0, maximum is 0

○ Otherwise, maximum is infinite

● There’s more cool math here, but
we’ll skip it for time

Duality in Linear Programming

Duality in Linear Programming

Duality in Linear Programming

Duality in Linear Programming

Duality in Linear Programming

Duality in Linear Programming

Duality in Linear Programming

Duality in Linear Programming

Fuzzing

bottom text

American Fuzzy Lop

American Fuzzy Lop

● Fuzzer: program that automatically
searches for buggy input

● Initial idea: purely random input

● Add rules/strategies/heuristics to
increase chance of buggy input

https://aflplus.plus/

Data Structures and
Algorithms

By Unsigned Long

@InverseHackermann

