
Data Structures & Algorithms @ AC2025
Deep C Adventures

Bunsen Bitti, Unsigned Long

July 3, 2025

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 1 / 51

Overview

Overview

This is a comedic/informative look at overlaps
between furry and computer science

This is not a rigorous lecture
There will be puns ˆwˆ

Don’t worry if our jokes don’t make sense!

We’ve been coding for most of our lives
If you’re confused, that’s on us
We’re out of touch with reality

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 2 / 51

Overview

Overview

This is a comedic/informative look at overlaps
between furry and computer science

This is not a rigorous lecture
There will be puns ˆwˆ

Don’t worry if our jokes don’t make sense!
We’ve been coding for most of our lives
If you’re confused, that’s on us
We’re out of touch with reality

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 2 / 51

How I Found the Fandom

How I Found the Fandom

Found furries through con videos

Found some eastern dragons with the
word “Long” in their name
Thought about “long” for too long
Realized it’s in my code
Pun was too good to do nothing with,
so I made a fursona

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 3 / 51

How I Found the Fandom

How I Found the Fandom

Found furries through con videos
Found some eastern dragons with the
word “Long” in their name

Thought about “long” for too long
Realized it’s in my code
Pun was too good to do nothing with,
so I made a fursona

Tien Long

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 3 / 51

How I Found the Fandom

How I Found the Fandom

Found furries through con videos
Found some eastern dragons with the
word “Long” in their name
Thought about “long” for too long

Realized it’s in my code
Pun was too good to do nothing with,
so I made a fursona

lóng

龙
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 3 / 51

How I Found the Fandom

How I Found the Fandom

Found furries through con videos
Found some eastern dragons with the
word “Long” in their name
Thought about “long” for too long
Realized it’s in my code

Pun was too good to do nothing with,
so I made a fursona

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 3 / 51

How I Found the Fandom

How I Found the Fandom

Found furries through con videos
Found some eastern dragons with the
word “Long” in their name
Thought about “long” for too long
Realized it’s in my code
Pun was too good to do nothing with,
so I made a fursona

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 3 / 51

Fursuits are Planar Graphs

Fursuits are Planar Graphs

Graph:
Vertices labeled 1, 2, . . . , n
Edges go between two vertices
At most n · (n − 1)/2 edgesa

Planar graphs: graphs that can be
drawn without crossing edges

At most 3n − 6 = O(n) edges!b
Fursuits are planar graphs
Seam count = O(Fabric patch count)

aAssuming simple graphs

bAssuming faces have degree ≥ 3

1

2

3

4

6

5

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 4 / 51

Fursuits are Planar Graphs

Fursuits are Planar Graphs

Graph:
Vertices labeled 1, 2, . . . , n
Edges go between two vertices
At most n · (n − 1)/2 = O(n2) edgesa

Planar graphs: graphs that can be
drawn without crossing edges

At most 3n − 6 = O(n) edges!b
Fursuits are planar graphs
Seam count = O(Fabric patch count)

aAssuming simple graphs

bAssuming faces have degree ≥ 3

1

2

3

4

6

5

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 4 / 51

Fursuits are Planar Graphs

Fursuits are Planar Graphs

Graph:
Vertices labeled 1, 2, . . . , n
Edges go between two vertices
At most n · (n − 1)/2 = O(n2) edgesa

Planar graphs: graphs that can be
drawn without crossing edges

At most 3n − 6 = O(n) edges!b
Fursuits are planar graphs
Seam count = O(Fabric patch count)

aAssuming simple graphs
bAssuming faces have degree ≥ 3

1

2

3

4

6

5

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 4 / 51

Alphabet Trees

Trees!

Trees are the building block of
most data structures.

Every node has one parent,
except for the root which has
no parent.

Nodes with no children are
leaves, nodes with children are
internal nodes.

By Paddy3118 - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=83223854

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 5 / 51

Alphabet Trees

A-Z of Trees (non-exhaustive)

AVL Trees
B Trees
Cartesian Trees
Decision Tree
Exponential Trees
Fenwick Trees
Gomory-Hu Tree
H-Tree
Interval Tree
Judy Array

k-d Tree
Link-Cut Tree
Merkle Trees
N Tree
Order Statistics Tree
PQ Tree
Quadtree
Red Black Trees
Splay Trees
Tango Trees

Universal B Trees
Vantage Point Tree
Wallace Tree
X-fast Trie
Y-fast Trie
Zip Trees

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 6 / 51

Alphabet Trees

Subsections Subtrees

ARSTZ : Balanced Binary Search Trees (BST)

BCMUXY : Other Binary Trees

IKQV : Spatial Data Structures

EFGJLP : Niche data structures

DHNOW : Non-data structures

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 7 / 51

Alphabet Trees

Subsections Subtrees

ARSTZ : Balanced Binary Search Trees (BST)

BCMUXY : Other Binary Trees

IKQV : Spatial Data Structures

EFGJLP : Niche data structures

DHNOW : Non-data structures

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 8 / 51

Alphabet Trees

AVL Trees1

First O(log n) self-balancing
binary search tree!

Ensures the height of its
children do not differ by > 1

https://commons.wikimedia.org/w/index.php?curid=49182185

F

J

L

N

P

Q

S

U

V

X

Q

S

U

XC

D G

0 0 0

0

–1

+1

+1

+1

0

–1 0

0

–1

1Adelson-Velsky, Georgy; Landis, Evgenii (1962)
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 9 / 51

Alphabet Trees

AVL Trees (Rotation)

Imbalances are fixed by
rotations, fundamental
local operations for many
balanced BSTs

/r/furry irl/comments/1dumfg3/

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 10 / 51

Alphabet Trees

AVL Trees (Rotation)

Imbalances are fixed by
rotations, fundamental
local operations for many
balanced BSTs

https://pages.cs.wisc.edu/~qingyi/

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 11 / 51

Alphabet Trees

Red Black Tree2

Balanced BST, red-black coloring
chosen because it looked best on the
laser printer they used.

All root-to-leaf paths have the same
number of black nodes

No red node has a red parent
https://pages.cs.wisc.edu/~wyoungjun/

2Guibas, Leonidas J.; Sedgewick, Robert (1978).
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 12 / 51

Alphabet Trees

Splay?

https://en.wikifur.com/wiki/Furpile

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 13 / 51

Alphabet Trees

Splay Tree3

After every operation, splay the
searched node to the root of the tree
using double-rotations.

Suspected to be optimal for any
sequence of BST operations up to a
constant factor (Dynamic Optimality
Conjecture)

Trabelsi, Zouheir & Zeidan, Safaa & Masud, Mehedy & Ghoudi, Kilani.

(2015). Statistical Dynamic Splay Tree Filters.

3Sleator, Daniel D.; Tarjan, Robert E. (1985).
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 14 / 51

Alphabet Trees

B Tree4

Generalising binary search trees to > 2 children

Internal nodes hold both data and pointers to children nodes in sorted order

Forms the basis of many filesystem structures
Apple HFS+, Microsoft NTFS, Linux ext4

4Bayer, R.; McCreight, E. (July 1970).
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 15 / 51

Alphabet Trees

B Tree (Diagram)

7 16

9 121 2 18 215 6

By CyHawk, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=11701365

What Rudy [Bayer] likes to say is, the more you think about what the B in B-Tree means, the
better you understand B-Trees!
- Edward M. McCreight

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 16 / 51

Alphabet Trees

Merkle Tree5

Tree of hashes, widely used
for data verification

Cryptographic schemes
P2P file sharing
Distrbuted filesystems

Each internal node hashes the
concatenated hashes of their
children.

Only recomputes O(log n)
hashes when data changes!

5Merkle, R. C. (1979)
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 17 / 51

Alphabet Trees

k-d tree6

Each node is a k-dimensional point,
each internal node splits one of the
dimensions at the point.

O(log n) insert, delete and search for a
point, fasta range search and nearest
neighbour search.

asubject to curse of dimensionality

6Bentley, J. L. (1975).
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 18 / 51

Alphabet Trees

Exponential Trees7

Has niche uses in hash tables

Time complexity is a bit cursed

7Andersson, Arne (October 1996)
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 19 / 51

Alphabet Trees

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 20 / 51

Alphabet Trees

Link-Cut Tree8

Maintains a set of rooted trees

Amortized O(log n) link, cut
and find-root at any node

Improves Dinic’s Algorithm
(for max-flow) from O(V 2E)
to O(VE log V).

By Drrilll, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=25495327

8Sleator, D. D.; Tarjan, R. E. (1983).
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 21 / 51

Alphabet Trees

Decision Trees

Each node represents a query, each leaf
represents a category/decision.

Commonly used in decision analysis
and machine learning

Fuzzy Decision Trees are also a thing

MIT 6.390 Intro ML Course Notes and Breiman, Friedman, Olshen, Stone (1984)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 22 / 51

Alphabet Trees

(Furry) Decision Trees (r/furry/comments/4gxm0l/)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 23 / 51

Alphabet Trees

H Trees

Binary tree fractal!

Used in chip design in order to
distribute wide reaching nets

https://www.tamurajones.net/FractalGenealogy.xhtml

Tawfik, Sherif & Kursun, Volkan. (2008).

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 24 / 51

Alphabet Trees

Missing N-tree

Seriously I could not find any tree data structure that starts with N

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 25 / 51

Macro-Micro Tree Decomposition

Macro-Micro Tree Decomposition

Node is micro if it has less than O(log(n))
descendants (else macro)
Node is macro leaf if it is macro and all its
children are micro
Subtree is microtree if its parent is a macro leaf
There are at most O(n/ log(n)) macro leaves

Macro leaves have O(log(n)) decendants, and
do not share decendants

There are O(n1/c) distinct microtree shapes
Tree shape count is exponential in node count
Number of microtree nodes is logarithmic in n
log and exp cancel out to O(n1/c)

13 14

98 10 11 12

5 6 7

2 43

1

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 26 / 51

Fast Furrier Transform

Fast Furrier Transform

Fourier Transform?
Typically computed with complex numbers
Transform signal between time and frequency domain

This is not a math panel!
See this 3Blue1Brown video:
“But what is the Fourier Transform? A visual introduction.” →

This is an algorithms panel :3
We will use FFT to multiply polynomials in O(n log n) time

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 27 / 51

Fast Furrier Transform

Fast Furrier Transform

Fourier Transform?
Typically computed with complex numbers
Transform signal between time and frequency domain

This is not a math panel!
See this 3Blue1Brown video:
“But what is the Fourier Transform? A visual introduction.” →

This is an algorithms panel :3
We will use FFT to multiply polynomials in O(n log n) time

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 27 / 51

Fast Furrier Transform

Fast Furrier Transform

Fourier Transform?
Typically computed with complex numbers
Transform signal between time and frequency domain

This is not a math panel!
See this 3Blue1Brown video:
“But what is the Fourier Transform? A visual introduction.” →

This is an algorithms panel :3
We will use FFT to multiply polynomials in O(n log n) time

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 27 / 51

Fast Furrier Transform Polynomials

Fast Furrier Transform: Polynomials

f (x) = 3 + 2x − 4x2 + x 3

coefficient term degree

f (0) = 3
f (1) = 2
f (2) = −1
f (3) = 0

Evaluating a polynomial at a point
takes O(n) time

x

f (x)

(0, 3)

(1, 2)

(2, −1)

(3, 0)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 28 / 51

Fast Furrier Transform Multiplication

Fast Furrier Transform: Multiplication

f (x) = 3 + 2x − 4x2 + x3

g(x) = 2 − x + x2

h(x) = f (x) · g(x) = 6 + x − 7x2 + 8x3 − 5x4 + x5

Multiplying two polynomials of degree n by distributing takes O(n2) time

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 29 / 51

Fast Furrier Transform Polynomial Interpolation/Evaluation

Fast Furrier Transform: Polynomial Interpolation/Evaluation

For a set of n points, there is a unique
polynomial with degree less than n
that passes through all the points
Evaluating the polynomial at n
different x values to find these points
typically takes O(n2) time
If we choose the x values cleverly, we
can do better

x

f (x)

(0, 3)

(1, 2)

(2, −1)

(3, 0)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 30 / 51

Fast Furrier Transform Evaluation at ±1

Fast Furrier Transform: Evaluation at ±1

f (x) = a0 + a1x + a2x2 + a3x3 + · · · + an−2xn−2 + an−1xn−1

f (1) = a0 + a1 + a2 + a3 + · · · + an−2 + an−1

f (−1) = a0 − a1 + a2 − a3 + · · · + an−2 − an−1

f (1) = (a0 + a2 + · · · + an−2) + (a1 + a3 + · · · + an−1)
f (−1) = (a0 + a2 + · · · + an−2) − (a1 + a3 + · · · + an−1)

Number of operations is halved!

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 31 / 51

Fast Furrier Transform Evaluation at ±1

Fast Furrier Transform: Evaluation at ±1

f (x) = a0 + a1x + a2x2 + a3x3 + · · · + an−2xn−2 + an−1xn−1

f (1) = a0 + a1 + a2 + a3 + · · · + an−2 + an−1

f (−1) = a0 − a1 + a2 − a3 + · · · + an−2 − an−1

f (1) = (a0 + a2 + · · · + an−2) + (a1 + a3 + · · · + an−1)
f (−1) = (a0 + a2 + · · · + an−2) − (a1 + a3 + · · · + an−1)

Number of operations is halved!

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 31 / 51

Fast Furrier Transform Evaluation at ±1

Fast Furrier Transform: Evaluation at ±1

f (x) = a0 + a1x + a2x2 + a3x3 + · · · + an−2xn−2 + an−1xn−1

f (1) = a0 + a1 + a2 + a3 + · · · + an−2 + an−1

f (−1) = a0 − a1 + a2 − a3 + · · · + an−2 − an−1

f (1) = (a0 + a2 + · · · + an−2) + (a1 + a3 + · · · + an−1)
f (−1) = (a0 + a2 + · · · + an−2) − (a1 + a3 + · · · + an−1)

Number of operations is halved!

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 31 / 51

Fast Furrier Transform Evaluation at ±1

Fast Furrier Transform: Evaluation at ±1

f (x) = a0 + a1x + a2x2 + a3x3 + · · · + an−2xn−2 + an−1xn−1

f (1) = a0 + a1 + a2 + a3 + · · · + an−2 + an−1

f (−1) = a0 − a1 + a2 − a3 + · · · + an−2 − an−1

f (1) = (a0 + a2 + · · · + an−2) + (a1 + a3 + · · · + an−1)
f (−1) = (a0 + a2 + · · · + an−2) − (a1 + a3 + · · · + an−1)

Number of operations is halved!
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 31 / 51

Fast Furrier Transform Roots of Unity

Fast Furrier Transform: Roots of Unity

The even/odd trick works because
repeatedly multiplying by −1
cycles between −1 and 1
It’d be convenient if we had other
values making this kind of cycle, and if
these cycles were longer

Complex numbers give us values r
where rn = 1
These are called roots of unity
FFT evaluates f at 1, r , r 2, . . . , rn−1

−1 1

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 32 / 51

Fast Furrier Transform Roots of Unity

Fast Furrier Transform: Roots of Unity

The even/odd trick works because
repeatedly multiplying by −1
cycles between −1 and 1
It’d be convenient if we had other
values making this kind of cycle, and if
these cycles were longer
Complex numbers give us values r
where rn = 1
These are called roots of unity
FFT evaluates f at 1, r , r 2, . . . , rn−1

−1 1

i

−1

−i

1

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 32 / 51

Fast Furrier Transform Odd/Even Trick

Fast Furrier Transform: Odd/Even Trick

f (x) = a0 + a1x + a2x2 + · · · + an−1xn−1

fe(x) = a0 +a2x2+a4x4 + · · · + an−2xn−2

fo(x) = a1x+a3x3+a5x5 + · · · + an−1xn−1

fo(x) = x(a1 +a3x2+a5x4 + · · · + an−1xn−2)

ge(y) = a0 +a2y +a4y 2 + · · · + an−2yn/2−1

go(y) = a1 +a3y +a5y 2 + · · · + an−1yn/2−1

f (x) = ge(x2) + xgo(x2)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 33 / 51

Fast Furrier Transform Odd/Even Trick

Fast Furrier Transform: Odd/Even Trick

f (x) = a0 + a1x + a2x2 + · · · + an−1xn−1

fe(x) = a0 +a2x2+a4x4 + · · · + an−2xn−2

fo(x) = a1x+a3x3+a5x5 + · · · + an−1xn−1

fo(x) = x(a1 +a3x2+a5x4 + · · · + an−1xn−2)

ge(y) = a0 +a2y +a4y 2 + · · · + an−2yn/2−1

go(y) = a1 +a3y +a5y 2 + · · · + an−1yn/2−1

f (x) = ge(x2) + xgo(x2)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 33 / 51

Fast Furrier Transform Odd/Even Trick

Fast Furrier Transform: Odd/Even Trick

f (x) = a0 + a1x + a2x2 + · · · + an−1xn−1

fe(x) = a0 +a2x2+a4x4 + · · · + an−2xn−2

fo(x) = a1x+a3x3+a5x5 + · · · + an−1xn−1

fo(x) = x(a1 +a3x2+a5x4 + · · · + an−1xn−2)

ge(y) = a0 +a2y +a4y 2 + · · · + an−2yn/2−1

go(y) = a1 +a3y +a5y 2 + · · · + an−1yn/2−1

f (x) = ge(x2) + xgo(x2)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 33 / 51

Fast Furrier Transform Odd/Even Trick

Fast Furrier Transform: Odd/Even Trick

f (x) = a0 + a1x + a2x2 + · · · + an−1xn−1

fe(x) = a0 +a2x2+a4x4 + · · · + an−2xn−2

fo(x) = a1x+a3x3+a5x5 + · · · + an−1xn−1

fo(x) = x(a1 +a3x2+a5x4 + · · · + an−1xn−2)

ge(y) = a0 +a2y +a4y 2 + · · · + an−2yn/2−1

go(y) = a1 +a3y +a5y 2 + · · · + an−1yn/2−1

f (x) = ge(x2) + xgo(x2)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 33 / 51

Fast Furrier Transform Odd/Even Trick

Fast Furrier Transform: Odd/Even Trick

f (x) = a0 + a1x + a2x2 + · · · + an−1xn−1

fe(x) = a0 +a2x2+a4x4 + · · · + an−2xn−2

fo(x) = a1x+a3x3+a5x5 + · · · + an−1xn−1

fo(x) = x(a1 +a3x2+a5x4 + · · · + an−1xn−2)

ge(y) = a0 +a2y +a4y 2 + · · · + an−2yn/2−1

go(y) = a1 +a3y +a5y 2 + · · · + an−1yn/2−1

f (x) = ge(x2) + xgo(x2)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 33 / 51

Fast Furrier Transform Odd/Even Trick

Fast Furrier Transform: Odd/Even Trick

f (x) = a0 + a1x + a2x2 + · · · + an−1xn−1

fe(x) = a0 +a2x2+a4x4 + · · · + an−2xn−2

fo(x) = a1x+a3x3+a5x5 + · · · + an−1xn−1

fo(x) = x(a1 +a3x2+a5x4 + · · · + an−1xn−2)

ge(y) = a0 +a2y +a4y 2 + · · · + an−2yn/2−1

go(y) = a1 +a3y +a5y 2 + · · · + an−1yn/2−1

f (x) = ge(x2) + xgo(x2)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 33 / 51

Fast Furrier Transform Divide and Conquer

Fast Furrier Transform: Divide and Conquer

f (x) = a0 + a1x + a2x2 + . . . + an−1xn−1 = ge(x2) + xgo(x2)
ge(y) = a0 + a2y + a4y 2 + . . . + an−2yn/2−1

go(y) = a1 + a3y + a5y 2 + . . . + an−1yn/2−1

We need to evaluate ge and go at y = x2 =

(1)2, (r)2, (r 2)2, . . . , (rn/2−1)2, (rn/2)2, (rn/2+1)2, . . . , (rn−1)2

1, r 2, r 4, . . . , rn−2, rn = 1, r 2, . . . , rn−2

To evaluate f at n roots of unity, we evaluate ge and go at n/2 roots of unity
Recursion! T (n) = 2T (n/2) + O(n) = O(n log n)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 34 / 51

Fast Furrier Transform Divide and Conquer

Fast Furrier Transform: Divide and Conquer

f (x) = a0 + a1x + a2x2 + . . . + an−1xn−1 = ge(x2) + xgo(x2)
ge(y) = a0 + a2y + a4y 2 + . . . + an−2yn/2−1

go(y) = a1 + a3y + a5y 2 + . . . + an−1yn/2−1

We need to evaluate ge and go at y = x2 =

(1)2, (r)2, (r 2)2, . . . , (rn/2−1)2, (rn/2)2, (rn/2+1)2, . . . , (rn−1)2

1, r 2, r 4, . . . , rn−2, rn = 1, r 2, . . . , rn−2

To evaluate f at n roots of unity, we evaluate ge and go at n/2 roots of unity
Recursion! T (n) = 2T (n/2) + O(n) = O(n log n)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 34 / 51

Fast Furrier Transform Divide and Conquer

Fast Furrier Transform: Divide and Conquer

f (x) = a0 + a1x + a2x2 + . . . + an−1xn−1 = ge(x2) + xgo(x2)
ge(y) = a0 + a2y + a4y 2 + . . . + an−2yn/2−1

go(y) = a1 + a3y + a5y 2 + . . . + an−1yn/2−1

We need to evaluate ge and go at y = x2 =

(1)2, (r)2, (r 2)2, . . . , (rn/2−1)2, (rn/2)2, (rn/2+1)2, . . . , (rn−1)2

1, r 2, r 4, . . . , rn−2, rn = 1, r 2, . . . , rn−2

To evaluate f at n roots of unity, we evaluate ge and go at n/2 roots of unity
Recursion! T (n) = 2T (n/2) + O(n) = O(n log n)
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 34 / 51

Fast Furrier Transform Inverse FFT?

Fast Furrier Transform: Inverse FFT?

Multiplying polynomials of degree n
Distributing would take O(n2)
FFT takes O(n log n)
Pointwise multiplication takes O(n)

FFT is (approximately) its own inverse

No proof here: not a math panel
IFFT takes O(n log n)
The Anti-Furry Transform is just a
Furry Transform in disguise :3

f , g
coeff

h
coeff

f , g
points

h
points

Distributing
O(n2)

FFT
O(n log n) Pointwise

multiplication
O(n)

FFT
O(n log n)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 35 / 51

Fast Furrier Transform Inverse FFT?

Fast Furrier Transform: Inverse FFT?

Multiplying polynomials of degree n
Distributing would take O(n2)
FFT takes O(n log n)
Pointwise multiplication takes O(n)

FFT is (approximately) its own inverse
No proof here: not a math panel
IFFT takes O(n log n)
The Anti-Furry Transform is just a
Furry Transform in disguise :3

f , g
coeff

h
coeff

f , g
points

h
points

Distributing
O(n2)

FFT
O(n log n) Pointwise

multiplication
O(n)

IFFT
O(n log n)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 35 / 51

Animal Computing Mascots

Animal Computing Mascots

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 36 / 51

Animal Computing Mascots Trans Rights!

Animal Computing Mascots: Trans Rights!

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 37 / 51

Animal Computing Mascots Unofficial Mascot of C++

Animal Computing Mascots: Unofficial Mascot of C++

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 38 / 51

Animal Computing Mascots Powershell...

Animal Computing Mascots: Powershell...

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 39 / 51

Animal Computing Mascots WSL

Animal Computing Mascots: WSL
From: Richard Stallman

Subject: WSL
Date: Mon, 23 Jan 2023 22:50:01 -0500

[[[To any NSA and FBI agents reading my email: please consider]]]
[[[whether defending the US Constitution against all enemies,]]]
[[[foreign or domestic, requires you to follow Snowden’s example.]]]

How about pronouncing (and writing) "WSL" as "weasel"?

--
Dr Richard Stallman (https://stallman.org)
Chief GNUisance of the GNU Project (https://gnu.org)
Founder, Free Software Foundation (https://fsf.org)
Internet Hall-of-Famer (https://internethalloffame.org)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 40 / 51

Gray Code

Gray Code

Gray Himakar
Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 41 / 51

Gray Code

Gray Code

Normal counting can have many digits
change when going to the next value

Physical switches changing might
not be simultaneous

Binary reflected gray code (BRGC): to
add a bit, reflect existing sequence,
give one half a 0, and the other half a 1
There are cool bit hacks for computing
the next BRGC value and converting
between binary and BRGC
There are also variants that balance
the number of transitions per bit

Binary

BRGC

000

000

001

001

010

011

011

010

100

110

101

111

110

101

111

100

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 42 / 51

Gray Code

Gray Code

Normal counting can have many digits
change when going to the next value

Physical switches changing might
not be simultaneous

Binary reflected gray code (BRGC): to
add a bit, reflect existing sequence,
give one half a 0, and the other half a 1

There are cool bit hacks for computing
the next BRGC value and converting
between binary and BRGC
There are also variants that balance
the number of transitions per bit

Binary BRGC
000

00

0
001

00

1
010

011

011

010

100

110

101

111

110

101

111

100

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 42 / 51

Gray Code

Gray Code

Normal counting can have many digits
change when going to the next value

Physical switches changing might
not be simultaneous

Binary reflected gray code (BRGC): to
add a bit, reflect existing sequence,
give one half a 0, and the other half a 1

There are cool bit hacks for computing
the next BRGC value and converting
between binary and BRGC
There are also variants that balance
the number of transitions per bit

Binary BRGC
000

00

0
001

00

1
010

01

1
011

01

0
100

110

101

111

110

101

111

100

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 42 / 51

Gray Code

Gray Code

Normal counting can have many digits
change when going to the next value

Physical switches changing might
not be simultaneous

Binary reflected gray code (BRGC): to
add a bit, reflect existing sequence,
give one half a 0, and the other half a 1

There are cool bit hacks for computing
the next BRGC value and converting
between binary and BRGC
There are also variants that balance
the number of transitions per bit

Binary BRGC
000

0

00
001

0

01
010

0

11
011

0

10
100

110

101

111

110

101

111

100

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 42 / 51

Gray Code

Gray Code

Normal counting can have many digits
change when going to the next value

Physical switches changing might
not be simultaneous

Binary reflected gray code (BRGC): to
add a bit, reflect existing sequence,
give one half a 0, and the other half a 1

There are cool bit hacks for computing
the next BRGC value and converting
between binary and BRGC
There are also variants that balance
the number of transitions per bit

Binary BRGC
000

0

00
001

0

01
010

0

11
011

0

10
100

1

10
101

1

11
110

1

01
111

1

00

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 42 / 51

Gray Code

Gray Code

Normal counting can have many digits
change when going to the next value

Physical switches changing might
not be simultaneous

Binary reflected gray code (BRGC): to
add a bit, reflect existing sequence,
give one half a 0, and the other half a 1

There are cool bit hacks for computing
the next BRGC value and converting
between binary and BRGC
There are also variants that balance
the number of transitions per bit

Binary BRGC
000 000
001 001
010 011
011 010
100 110
101 111
110 101
111 100

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 42 / 51

Gray Code

Gray Code

Normal counting can have many digits
change when going to the next value

Physical switches changing might
not be simultaneous

Binary reflected gray code (BRGC): to
add a bit, reflect existing sequence,
give one half a 0, and the other half a 1
There are cool bit hacks for computing
the next BRGC value and converting
between binary and BRGC
There are also variants that balance
the number of transitions per bit

Binary BRGC
000 000
001 001
010 011
011 010
100 110
101 111
110 101
111 100

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 42 / 51

Morse Code

Morse Code

5 4 3 2 + 1 6 = / 7 8 9 0

H V F L P J B X C Y Z Q

S U R W D K G O

I A N M

E T

start

Letter Frequency
E 12.7%
T 9.1%
A 8.2%
O 7.5%
I 7.0%
N 6.7%
S 6.3%
H 6.1%
R 6.0%
D 4.3%
L 4.0%

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 43 / 51

Morse Code

Morse Code

5 4 3 2 + 1 6 = / 7 8 9 0

H V F L P J B X C Y Z Q

S U R W D K G O

I A N M

E T

start
Letter Frequency

E 12.7%
T 9.1%
A 8.2%
O 7.5%
I 7.0%
N 6.7%
S 6.3%
H 6.1%
R 6.0%
D 4.3%
L 4.0%

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 43 / 51

Morse Code

Morse Code

5 4 3 2 + 1 6 = / 7 8 9 0

H V F L P J B X C Y Z Q

S U R W D K G O

I A N M

E T

start
Letter Frequency

E 12.7%
T 9.1%
A 8.2%
O 7.5%
I 7.0%
N 6.7%
S 6.3%
H 6.1%
R 6.0%
D 4.3%
L 4.0%

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 43 / 51

Braille

Braille
Aroga Braille Chart

ALPHABET AND NUMBERS

1 2 3 4 5 6 7 8 9 0
a b c d e f g h i j

abcdefghij
k l m n o p q r s t

klmnopqrst
u v x y z w

uvxyz w

INDICATORS

letter

word

passage

capital terminator

u

uu

u

u
Grade 1

symbol

word

passage

Grade 1 terminator

y

z

z

Typeform

italic symbol

italic word

italic passage

italic terminator

bold symbol

bold word

bold passage

bold terminator

underline symbol

underline word

underline passage

underline terminator

script symbol

script word

script passage

script terminator

PUNCTUATION

comma ,

period .

apostrophe ‘

colon :

dash _

long dash —

exclamation mark !

hyphen -

question mark ?

semicolon ;

ellipsis ...

forward slash /

backward slash \

opening outer
quotation mark “

closing outer
quotation mark ”

opening inner
quotation mark ‘

closing inner
quotation mark ’

GROUPING PUNCTUATION

opening round
parenthesis (
closing round
parenthesis)
opening square
bracket [
closing square
bracket]
opening curly
bracket {
closing curly
bracket }
opening angle
bracket <
closing angle
bracket >

SIGNS OF OPERATION
AND COMPARISON

plus +

minus -

multiplication x

multiplication dot

division ÷

greater than >

less than <

equals =

CURRENCY AND
MEASUREMENT

cent ¢

dollar $

euro €

British Pound £

feet ‘

inches “

SPECIAL SYMBOLS

percent %

degree °

angle

hashtag #

ampersand &

copyright ©

trademark ™
superscript
indicator
subscript
indicator

ALPHABETIC WORDSIGNS

b
c
d
e
f
g
h
j
k
l
m
n
p
q
r
s
t
u
v
w
x
y
z

but
can
do
every
from
go
have
just
knowledge
like
more
not
people
quite
rather
so
that
us
very
will
it
you
as

STRONG WORDSIGNS

child

shall

this

which

out

still

STRONG GROUPSIGNS

ch

sh

th

wh

ou

st

gh

ed

er

ow

ar

ing

STRONG CONTRACTIONS
(Part and Whole Word)

and

for

of

the

with

 FINAL-LETTER
GROUPSIGNS

ound

ance

sion

less

ount

ence

ong

ful

tion

ness

ment

ityLOWER
GROUPSIGNS

ea

bb

cc

ff

gg

be

con

dis

en

in

LOWER WORDSIGNS

be

enough

were

his

in

was

INITIAL-LETTER
CONTRACTIONS

day

ever

father

here

know

lord

mother

name

one

part

question

right

some

time

under

work

young

there

character

through

where

ought

upon

word

these

those

whose

cannot

had

many

spirit

world

their

SHORTFORM WORDS

ab
abv
ac
acr
af
afn
afw
ag
agst
alm
alr
al
alth
alt
alw
bec
bef
beh
bel
ben
bes
bet
bey
bl
brl
chn
concv
concvg
cd
dcv
dcvg
dcl
dclg
ei
fst
fr
gd
grt

about
above
according
across
aft er
aft ernoon
aft erward
again
against
almost
already
also
although
altogether
always
because
before
behind
below
beneath
beside
between
beyond
blind
braille
children
conceive
conceiving
could
deceive
deceiving
declare
declaring
either
fi rst
friend
good
great

herf
hm
hmf
imm
xs
xf
lr
ll
mch
mst
myf
nec
nei
onef
ourvs
pd
percv
percvg
perh
qk
rcv
rcvg
rjc
rjcg
sd
shd
sch
themvs
thyf
td
tgr
tm
tn
wd
yr
yrf
yrvs

herself
him
himself
immediate
its
itself
letter
little
much
must
myself
necessary
neither
oneself
ourselves
paid
perceive
perceiving
perhaps
quick
receive
receiving
rejoice
rejoicing
said
should
such
themselves
thyself
today
together
tomorrow
tonight
would
your
yourself
yourselves

Retired Contractions
(not used in UEB)

ble ation ally

dd com to

into by o’c o’clock

ArogaTECHNOLOGIES
brought to you by

Visit our online store at www.aroga.com

TECHNOLOGIES

Capital

© Aroga Technologies 2014

Numeric

bullet

@ sign @

asterisk *

dot locator for mention

u

uu

z

zzz

zk

xp

xp

xz

xx

tp

tp

tz

tx

wp

wp

wz

wx

cp

cp

cz

cx

f

t

t

t

uu

euu

t

u

v

t

www

wt

wu

v

w

uv

uz

ev

wv

wn

wv

c

wn

v

cn

et

eu

ev

ew

et

ct

cv

ez

cf

cs

cz

cp

z

zz

wz

jj

w

wy

cv

df

dq

z

v

ww

tu

q

q

q

q

q

z

y

y

y

q

n

q

q

y

y

y

y

v

v

v

w

t

y

wg

w

wq

wq

wq

tg

gt

tp

qt

tq

tq

yt

eg

eg

eg

eg

ek

ev

eq

eq

en

e

ev

er

eq

et

ex

ew

ey

e

ez

ey

ez

eq

wz

ww

wq

wy

wq

wc

wh

mw

ws

ww

wq

b

l

h

t

q

l

h

w

w

t

l

w

q

v

t

t

t

w

zt

uq

u

t

uy

t

en

v

q

g

Unifi ed English

et

w

qw

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 44 / 51

Braille

Braille

ALPHABET AND NUMBERS
1 2 3 4 5 6 7 8 9 0
a b c d e f g h i j
.
.
.

.

.

.

r .
.
.

.

.

.

rr .
.
.

.

.

.

r r .
.
.

.

.

.

r rr .
.
.

.

.

.

r r .
.
.

.

.

.

rr r .
.
.

.

.

.

rr rr .
.
.

.

.

.

rr r .
.
.

.

.

.
r r .

.

.

.

.

.
r rr

k l m n o p q r s t
.
.
.

.

.

.

rr .
.
.

.

.

.

rrr .
.
.

.

.

.

rr r .
.
.

.

.

.

rr rr .
.
.

.

.

.

rr r .
.
.

.

.

.

rrr r .
.
.

.

.

.

rrr rr .
.
.

.

.

.

rrr r .
.
.

.

.

.
rr r .

.

.

.

.

.
rr rr

u v x y z w
.
.
.

.

.

.

rr r .
.
.

.

.

.

rrr r .
.
.

.

.

.

rr rr .
.
.

.

.

.

rr rrr .
.
.

.

.

.

rr rr .
.
.

.

.

.
r rrr

STRONG GROUPSIGNS
.
.
.

.

.

.

r r ch
.
.
.

.

.

.

rr r gh
.
.
.

.

.

.

r rr sh
.
.
.

.

.

.

rr rr ed
.
.
.

.

.

.

r rrr th
.
.
.

.

.

.

rr rrr er
.
.
.

.

.

.

r rr wh
.
.
.

.

.

.
r rr ow

.

.

.

.

.

.

rr rr ou
.
.
.

.

.

.r rr ar
.
.
.

.

.

.r r st
.
.
.

.

.

.r rr ing

“owo” is r rr rr r

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 45 / 51

Braille

Braille

ALPHABET AND NUMBERS
1 2 3 4 5 6 7 8 9 0
a b c d e f g h i j
.
.
.

.

.

.

r .
.
.

.

.

.

rr .
.
.

.

.

.

r r .
.
.

.

.

.

r rr .
.
.

.

.

.

r r .
.
.

.

.

.

rr r .
.
.

.

.

.

rr rr .
.
.

.

.

.

rr r .
.
.

.

.

.
r r .

.

.

.

.

.
r rr

k l m n o p q r s t
.
.
.

.

.

.

rr .
.
.

.

.

.

rrr .
.
.

.

.

.

rr r .
.
.

.

.

.

rr rr .
.
.

.

.

.

rr r .
.
.

.

.

.

rrr r .
.
.

.

.

.

rrr rr .
.
.

.

.

.

rrr r .
.
.

.

.

.
rr r .

.

.

.

.

.
rr rr

u v x y z w
.
.
.

.

.

.

rr r .
.
.

.

.

.

rrr r .
.
.

.

.

.

rr rr .
.
.

.

.

.

rr rrr .
.
.

.

.

.

rr rr .
.
.

.

.

.
r rrr

STRONG GROUPSIGNS
.
.
.

.

.

.

r r ch
.
.
.

.

.

.

rr r gh
.
.
.

.

.

.

r rr sh
.
.
.

.

.

.

rr rr ed
.
.
.

.

.

.

r rrr th
.
.
.

.

.

.

rr rrr er
.
.
.

.

.

.

r rr wh
.
.
.

.

.

.
r rr ow

.

.

.

.

.

.

rr rr ou
.
.
.

.

.

.r rr ar
.
.
.

.

.

.r r st
.
.
.

.

.

.r rr ing

“owo” is r rr rr r

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 45 / 51

Braille

Braille

ALPHABET AND NUMBERS
1 2 3 4 5 6 7 8 9 0
a b c d e f g h i j
.
.
.

.

.

.

r .
.
.

.

.

.

rr .
.
.

.

.

.

r r .
.
.

.

.

.

r rr .
.
.

.

.

.

r r .
.
.

.

.

.

rr r .
.
.

.

.

.

rr rr .
.
.

.

.

.

rr r .
.
.

.

.

.
r r .

.

.

.

.

.
r rr

k l m n o p q r s t
.
.
.

.

.

.

rr .
.
.

.

.

.

rrr .
.
.

.

.

.

rr r .
.
.

.

.

.

rr rr .
.
.

.

.

.

rr r .
.
.

.

.

.

rrr r .
.
.

.

.

.

rrr rr .
.
.

.

.

.

rrr r .
.
.

.

.

.
rr r .

.

.

.

.

.
rr rr

u v x y z w
.
.
.

.

.

.

rr r .
.
.

.

.

.

rrr r .
.
.

.

.

.

rr rr .
.
.

.

.

.

rr rrr .
.
.

.

.

.

rr rr .
.
.

.

.

.
r rrr

STRONG GROUPSIGNS
.
.
.

.

.

.

r r ch
.
.
.

.

.

.

rr r gh
.
.
.

.

.

.

r rr sh
.
.
.

.

.

.

rr rr ed
.
.
.

.

.

.

r rrr th
.
.
.

.

.

.

rr rrr er
.
.
.

.

.

.

r rr wh
.
.
.

.

.

.
r rr ow

.

.

.

.

.

.

rr rr ou
.
.
.

.

.

.r rr ar
.
.
.

.

.

.r r st
.
.
.

.

.

.r rr ing

“owo” is r rr rr r

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 45 / 51

Huffman Coding

Huffman Coding

More frequent characters get
shorter encodings
Used in .zip files and other
compression algorithms
Won’t go over details due to time

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 46 / 51

Tortoise and Hare The Cycle Finding Problem

Tortoise and Hare: The Cycle Finding Problem

Take some function f : [n] → [n],
and some starting value x .

Notation: [n] is the numbers
{1, . . . , n}, and f is a function that
takes a number from [n], and
outputs a number in [n]

By pidgeonhole principle, the sequence
x , f (x), f (f (x)), . . . , f i(x), . . .
will repeat
Find s, t such that f s(x) = f s+t(x)

xf (x)

f (f (x))

f s(x)

f s+1(x)

f t−2(x)

f t−1(x)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 47 / 51

Tortoise and Hare The Cycle Finding Problem

Tortoise and Hare: The Cycle Finding Problem

Take some function f : [n] → [n],
and some starting value x .

Notation: [n] is the numbers
{1, . . . , n}, and f is a function that
takes a number from [n], and
outputs a number in [n]

By pidgeonhole principle, the sequence
x , f (x), f (f (x)), . . . , f i(x), . . .
will repeat

Find s, t such that f s(x) = f s+t(x)

xf (x)

f (f (x))

f s(x)

f s+1(x)

f t−2(x)

f t−1(x)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 47 / 51

Tortoise and Hare The Cycle Finding Problem

Tortoise and Hare: The Cycle Finding Problem

Take some function f : [n] → [n],
and some starting value x .

Notation: [n] is the numbers
{1, . . . , n}, and f is a function that
takes a number from [n], and
outputs a number in [n]

By pidgeonhole principle, the sequence
x , f (x), f (f (x)), . . . , f i(x), . . .
will repeat
Find s, t such that f s(x) = f s+t(x)

xf (x)

f (f (x))

f s(x)

f s+1(x)

f t−2(x)

f t−1(x)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 47 / 51

Tortoise and Hare Floyd’s Algorithm

Tortoise and Hare: Floyd’s Algorithm

Algorithm description
Tortoise and hare start with
xt := x and xh := x .
When tortoise computes xt := f (xt),
hare computes xh := f (f (xh)).

Algorithm analysis

Eventually both tortoise and hare
will enter the cycle
When both are in the cycle, the hare
will catch up to the tortoise

Used in Pollard’s rho algorithm

Pollard’s kangaroo exists???

xf (x)

f (f (x))

f s(x)

f s+1(x)

f t−2(x)

f t−1(x)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 48 / 51

Tortoise and Hare Floyd’s Algorithm

Tortoise and Hare: Floyd’s Algorithm

Algorithm description
Tortoise and hare start with
xt := x and xh := x .
When tortoise computes xt := f (xt),
hare computes xh := f (f (xh)).

Algorithm analysis
Eventually both tortoise and hare
will enter the cycle
When both are in the cycle, the hare
will catch up to the tortoise

Used in Pollard’s rho algorithm

Pollard’s kangaroo exists???

xf (x)

f (f (x))

f s(x)

f s+1(x)

f t−2(x)

f t−1(x)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 48 / 51

Tortoise and Hare Floyd’s Algorithm

Tortoise and Hare: Floyd’s Algorithm

Algorithm description
Tortoise and hare start with
xt := x and xh := x .
When tortoise computes xt := f (xt),
hare computes xh := f (f (xh)).

Algorithm analysis
Eventually both tortoise and hare
will enter the cycle
When both are in the cycle, the hare
will catch up to the tortoise

Used in Pollard’s rho algorithm
Pollard’s kangaroo exists???

xf (x)

f (f (x))

f s(x)

f s+1(x)

f t−2(x)

f t−1(x)

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 48 / 51

Primal Duel

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 49 / 51

Primal Duel

Primal Duel

Optimization problems
Find minimum/maximum of objective function
Variables must satisfy constraints

Initial formulation called the “primal”
There is a transformation that moves primal constraints into objective function
terms, and moves primal objective function terms into constraints

The resulting formulation is called the “dual”
Some optimization algorithms switch between primal and dual formulations

Primal-dual methods

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 50 / 51

Primal Duel

Primal Duel

Optimization problems
Find minimum/maximum of objective function
Variables must satisfy constraints

Initial formulation called the “primal”

There is a transformation that moves primal constraints into objective function
terms, and moves primal objective function terms into constraints

The resulting formulation is called the “dual”
Some optimization algorithms switch between primal and dual formulations

Primal-dual methods

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 50 / 51

Primal Duel

Primal Duel

Optimization problems
Find minimum/maximum of objective function
Variables must satisfy constraints

Initial formulation called the “primal”
There is a transformation that moves primal constraints into objective function
terms, and moves primal objective function terms into constraints

The resulting formulation is called the “dual”

Some optimization algorithms switch between primal and dual formulations
Primal-dual methods

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 50 / 51

Primal Duel

Primal Duel

Optimization problems
Find minimum/maximum of objective function
Variables must satisfy constraints

Initial formulation called the “primal”
There is a transformation that moves primal constraints into objective function
terms, and moves primal objective function terms into constraints

The resulting formulation is called the “dual”
Some optimization algorithms switch between primal and dual formulations

Primal-dual methods

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 50 / 51

EOM

Data Structures & Algorithms @ AC2025
Deep C Adventures

Bunsen Bitti, Unsigned Long

July 3, 2025

Bunsen Bitti, Unsigned Long Data Structures & Algorithms @ AC2025 July 3, 2025 51 / 51

	Overview
	How I Found the Fandom
	Fursuits are Planar Graphs
	Alphabet Trees
	Macro-Micro Tree Decomposition
	Fast Furrier Transform
	Polynomials
	Multiplication
	Polynomial Interpolation/Evaluation
	Evaluation at ±1
	Roots of Unity
	Odd/Even Trick
	Divide and Conquer
	Inverse FFT?

	Animal Computing Mascots
	Trans Rights!
	Unofficial Mascot of C++
	Powershell...
	WSL

	Gray Code
	Morse Code
	Braille
	Huffman Coding
	Tortoise and Hare
	The Cycle Finding Problem
	Floyd's Algorithm

	Primal Duel
	EOM

