
Data Structures and
Algorithms

InverseHackermann

String Algorithms

Definitions

Character: one letter of the alphabet. Often appears in single quotes.

String: sequence of characters. Often appears in double quotes. Length denoted as |S|

For s=“onedragon”, S[0]=‘o’, S[1]=‘n’, S[2]=‘e’, etc.

Substring: A range of characters in a string. S[3 .. 6]=“drag”.

Prefix: substring starting at the beginning of the string.

Suffix: substring ending at the end of the string.

Border: both a prefix and a suffix of the string. “on” is a border of “onedragon”.

Proper: not the entire string. A string is always a border of itself, but not a proper border.

String matching

Goal: look for occurrences of pattern P within S.

Directly comparing at each index can take |S|*|P| comparisons.

Index: 0 1 2 3 4 5 6 7 8 9 10

S: R A W R A R A R W R A

P: R A R W

No match: R A R W

Match: R A R W

Knuth–Morris–Pratt (KMP) string matching

Solution: Combine string into T = P#S (‘#’ is a unique character).

Store LPB[i] = length of longest proper border for each prefix T[0 .. i].

To compute LPB[i], extend a border of T[0 .. i] by one character.

LPB[i - 1] is longest proper border of T[0 .. i]; how to get next shorter border?

Index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T: R A R W # R A W R A R A R W R A

lpb[i]: 0 0 1 0 0 1 2 0 1 2 3 2 3 4 1 2

lpb[10]=3:

lpb[2]=1:

Z-function

Again, combine string into T = P#S (‘#’ is a unique character). Store Z[i] = length of
longest matching prefix starting at index i. (skip i=0)

To compute Z[i], compute estimate for match length, then scan forwards.

Track r = furthest scanned index; When r increases, set l to match index, so S[l .. r]
= S[0 .. r - l + 1]. Use min(Z[i - l], r - l + 1) as estimate for Z[i].

Index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T: R A R W # R A W R A R A R W R A

z[i]: 0 1 0 0 2 0 0 3 0 4 0 1 0 2 0

z[8]=3

Estimates 0 1

Suffix Array

Array of sorted suffixes of a string. (Often last character is unique smallest char $)

Lexicographic order: compare first characters, break ties by next character.

Helps to think about text indices vs lex indices: regular string order is text index,
lexicographic order is lex index. (I’ll try keep i as text indices and j as lex indices.)

Suffix array: text indices sorted in lex order. Maps lex indices to text indices.

Similar substrings end up in nearby locations in suffix array.

Suffix Array
Text S Lex Text
0 R 0 11 $
1 A 1 10 A $
2 W 2 4 A R A R W R A $
3 R 3 6 A R W R A $
4 A 4 1 A W R A R A R W R A $
5 R 5 9 R A $
6 A 6 3 R A R A R W R A $
7 R 7 5 R A R W R A $
8 W 8 0 R A W R A R A R W R A $
9 R 9 7 R W R A $
10 A 10 8 W R A $
11 $ 11 2 W R A R A R W R A $

Burrows–Wheeler Transform (BWT)

Closely related to suffix array: start with sorted cyclic shifts of string.

Take last characters of each cyclic shift.

Due to sorted structure, similar substring appearances are grouped into ranges of
equal characters, so run-length encoding after BWT can be used for compression.

“LF mapping”: ith occurrence of character c in first character of shifts is at the
same text index as ith occurrence of character c in last character of shifts.

Use LF property to compute inverse BWT.

Burrows–Wheeler Transform (BWT)
Text S Lex Text F L
0 R 0 11 $ R A W R A R A R W R A
1 A 1 10 A $ R A W R A R A R W R
2 W 2 4 A R A R W R A $ R A W R
3 R 3 6 A R W R A $ R A W R A R
4 A 4 1 A W R A R A R W R A $ R
5 R 5 9 R A $ R A W R A R A R W
6 A 6 3 R A R A R W R A $ R A W
7 R 7 5 R A R W R A $ R A W R A
8 W 8 0 R A W R A R A R W R A $
9 R 9 7 R W R A $ R A W R A R A
10 A 10 8 W R A $ R A W R A R A R
11 $ 11 2 W R A R A R W R A $ R A

Longest Common Prefix (LCP) Array and
Longest Common Extension (LCE) Queries
Given suffix array SA, LCP[j] = longest common prefix of SA[j] and SA[j - 1].
(Skip j = 0).

Then LCE(ia, ib) = most matching characters starting at text indices ia and ib
= min(LCP[SA[ia] + 1 .. SA[ib]]). (May need to swap so SA[ia] < SA[ib].)

Let SAINV[SA[j]] = j. (inverse permutation, maps text indices to lex indices.)

Value of LCP[j] - 1 can estimate next text suffix LCP[SAINV[1 + SA[j]]].

LCP Array and LCE Queries
Text S Lex Text LCP
0 R 0 11 N/A $
1 A 1 10 0 A $
2 W 2 4 1 A R A R W R A $
3 R 3 6 2 A R W R A $
4 A 4 1 1 A W R A R A R W R A $
5 R 5 9 0 R A $
6 A 6 3 2 R A R A R W R A $
7 R 7 5 3 R A R W R A $
8 W 8 0 2 R A W R A R A R W R A $
9 R 9 7 1 R W R A $
10 A 10 8 0 W R A $
11 $ 11 2 3 W R A R A R W R A $

Range Minimum Queries (RMQ)

Precompute power-of-two-length RMQs.

Break general length RMQ into min of two power-of-two-length RMQ.

Some elements are counted twice, but counting twice in a min is fine.

Index 0 1 2 3 4 5 6 7 8 9

Original RMQ

Left power of two

Right power of two

