Data Structures and
Algorithms

String Algorithms

InverseHackermann

Definitions

Character: one letter of the alphabet. Often appears in single quotes.

String: sequence of characters. Often appears in double quotes. Length denoted as |S|
For s=“onedragon”, S[@]=0",S[1]=‘n’, S[2]=‘¢€’, etc.

Substring: A range of characters in a string. S[3 .. 6]=“drag”.

Prefix: substring starting at the beginning of the string.

Suffix: substring ending at the end of the string.

Border: both a prefix and a suffix of the string. “on” is a border of “onedragon”.

Proper: not the entire string. A string is always a border of itself, but not a proper border.

String matching

Goal: look for occurrences of pattern P within S.

Directly comparing at each index can take |S|*|P| comparisons.

Index: 0 1 2 3 4 5 6 7 8
S: R A W R A R A R W
P: R A R W

No match: R A R W

Match: R A R W

Knuth—Morris—Pratt (KMP) string matching

Solution: Combine string into T = P#S (‘#’ is a unique character).

Store LPB[i] = length of longest proper border for each prefix T[0 .. 1i].

To compute LPB[i], extend a border of T[@ .. i] by one character.

LPB[i - 1] is longest proper border of T[@ .. i]; how to get next shorter border?
Index: o 1 /2 3 |4 5 6 |7 8 |9 10 1 |12 13 14 15
T: R A R W # R A W R A R A R W |R A
lpb[i]: o 'o 1 ‘0o 0 1 2 0 1 |2 '3 2 '3 |4 |1 |2
lpb[10]=3:

lpb[2]=1:

Z-function

Again, combine string into T = P#S (‘#’ is a unique character). Store Z[i] = length of
longest matching prefix starting at index i. (skip i=9)

To compute Z[i], compute estimate for match length, then scan forwards.

Track r = furthest scanned index; When r increases, set 1 to match index, so S[1 .. r]
=S[@ .. r -1+ 1].Usemin(Z[i - 1], r - 1 + 1) as estimate for Z[1i].

Index: 0 1 2 3 4 5 6 7 8 9 10 11 |12 |13 |14 | 15
T: R A R W | # R A W R A R A R W R A

z[i]: 0 1 0 0 2 0 0 3 0 4 0 1 0 2 0

Estimates 0 1

Suffix Array

Array of sorted suffixes of a string. (Often last character is unique smallest char $)
Lexicographic order: compare first characters, break ties by next character.

Helps to think about text indices vs lex indices: regular string order is text index,
lexicographic order is lex index. (I'll try keep i as text indices and j as lex indices.)

Suffix array: text indices sorted in lex order. Maps lex indices to text indices.

Similar substrings end up in nearby locations in suffix array.

Suffix Array

Text

11

Lex

Text |S

10

10

11

10

11

Burrows—\Wheeler Transform (BWT)

Closely related to suffix array: start with sorted cyclic shifts of string.

Take last characters of each cyclic shift.

Due to sorted structure, similar substring appearances are grouped into ranges of
equal characters, so run-length encoding after BWT can be used for compression.

“LF mapping”: ith occurrence of character c in first character of shifts is at the
same text index as ith occurrence of character c in last character of shifts.

Use LF property to compute inverse BWT.

Burrows—\Wheeler Transform (BWT)

Text

11

10

Lex

10

11

Text |S

10

11

Longest Common Prefix (LCP) Array and
Longest Common Extension (LCE) Queries

Given suffix array SA, LCP[j] = longest common prefix of SA[j] and SA[]j - 1].
(Skip j = 9).

Then LCE(ia, ib) = most matching characters starting at text indices ia and ib
=min(LCP[SA[ia] + 1 .. SA[ib]]). (May need to swap so SAJ[ia] < SAJib].)

Let SAINV[SA[j]] = j. (inverse permutation, maps text indices to lex indices.)

Value of LCP[]j] - 1 can estimate next text suffix LCP[SAINV[1 + SA[j]]].

LCP Array and LCE Queries

&
Q1<
] =
%
|-
ﬁ O~
—A]1O O M~ ~— |~
mwlx < X < &
w O~
[(=) © |~ — | —

Range Minimum Queries (RMQ)

Precompute power-of-two-length RMQs.
Break general length RMQ into min of two power-of-two-length RMQ.

Some elements are counted twice, but counting twice in a min is fine.

Index 0 1 2 3 4 5 6 7

Original RMQ

Left power of two

Right power of two

